MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY (MIST)

COURSE CURRICULUM

BACHELOR OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

DEPARTMENT OF NAVAL ARCHITECTURE AND MARINE ENGINEERING (NAME)

JANUARY 2021

APPLICABLE FOR NAME- 9 & ONWARDS

<u>COMMITTEE OF COURSES – NAME DEPT, MIST</u>

The undergraduation course curriculum of the department of Naval Architecture and Marine Engineering (NAME) of Military Institute of Science and Technology (MIST) has been reviewed by the committee as mentioned below.

A. President	
1.	Commodore M Muzibur Rahman, (E), psc, BN Head, NAME Department Dean, Faculty of Science and Engineering (FSE) Military Institute of Science and Technology
B. <u>Internal Me</u>	<u>mbers</u>
1.	
	Air Commodore M Abdus Salam, BPP, psc, Dean, Faculty of Mechanical Engineering (FME) Head, Department of Aeronautical Engineering Military Institute of Science and Technology
2.	Captain Kaosar Rashid, (E), psc, BN Senior Instructor, NAME Department Military Institute of Science and Technology
3.	Commander M Golam Mohiuddin, (E), BN Instructor Class-A, NAME Department Military Institute of Science and Technology
4.	Commander M Masum Ul Haque, (E), BN Instructor Class-A, NAME Department Military Institute of Science and Technology

5.	
٥.	Lt Col Osman Md Amin, PhD, Engrs
	Instructor Class-A, NAME Department
	Military Institute of Science and Technology
	,
6.	
	Dr. S M Ikhtiar Mahmud
	Assistant Professor, NAME Department
	Military Institute of Science and Technology
7.	
	Md Touhidul Islam
	Assistant Professor, NAME Department
	Military Institute of Science and Technology
8.	
	Md Mezbah Uddin
	Assistant Professor, NAME Department
	Military Institute of Science and Technology
9.	
	Major SM Kamruzzaman, EME
	Instructor Class-B, NAME Department
	Military Institute of Science and Technology
10	
10.	
	Md Daluar Hussain
	Lecturer, NAME Department
	Military Institute of Science and Technology
Dair.	N# 1
<u>BUP</u>	<u>Members</u>
1	
1.	Dela Com Mil Amora Cl. C.
	Brig Gen Md Anwar Shafique, ndc, psc
	College Inspector
	Bangladesh University of Professionals (BUP)

C.

2.

Brig Gen Md Zahidur Rahim, ndc, afwc, psc Dean, Faculty of Science and Technology (FST) Bangladesh University of Professionals (BUP)

D. <u>External Members</u>

1.

Dr. Goutam Kumar Saha Professor Department of Naval Architecture and Marine Engineering Bangladesh University of Engineering and Technology

2.

Commodore M Mohidul Hasan, (E), psc, BN Chittagong Dry Dock Limited (CDDL), Chattogram, Bangladesh

E. <u>Member Secretary</u>

Lt Col Muhammad Rabiul Islam, PhD, EME Instructor Class-A, NAME Department Military Institute of Science and Technology

CONTENTS

CHAPTER 1			
GENERAL I	NFORM	ATION	
1.1		Introduction to MIST	1
1.2		Vision and Mission of MIST	1
1.3		Salient Features of MIST	2
1.4		Location	2
1.5		Faculties	2
1.6		Eligibility of Students for Admission in MIST	3
1.7		Number of Seats	4
1.8		Admission Procedure	4
	1.8.1	Syllabus for Admission Test	4
	1.8.2	Final Selection	5
	1.8.3	Medical Checkup	5
1.9		Students Withdrawal Policy	5
	1.9.1	General Policy of Withdrawal	5
	1.9.2	Withdrawal on Disciplinary Ground	6
	1.9.3	Withdrawal on Own Accord	6
CHAPTER 2			
RULES AND	REGUL	ATIONS FOR UNDERGRADUATE PROGRAMME AT MIST	
2.1		Introduction	7
2.2		The Course System	7
2.3		Number of Terms in a Year	7
2.4		Duration of Terms	7
2.5		Course Pattern and Credit Structure	8
2.6		Course Distribution System	8
2.7		Assignment of Credits	9
2.8		Types of Courses	9
2.9		Course Offering and Instruction	9
2.10		Teacher Student Interaction	9
2.11		Students' Advisor	9
2.12		Course Registration	10
2.13		Registration Procedure	10
2.14		Pre-conditions for Registration	10
2.15		Registration Deadline	10
2.16		Penalty for Late Registration	11
2.17		Limits on the Credit Hours to be Taken	11
2.18		Course Add/Drop	11
2.19		Withdrawal from a Term	11
2.20		The Grading System	12
2.21		Marks Distribution	12
	2.21.1	Theory	

	2.21	.2 Sessional/Practical Examinations	13
	2.21	.3 Sessional Course in English	13
	2.21	.4 Class Attendance	13
2.	22	Calculation of GPA	13
2.	23	Minimum Earned Credit and GPA Requirement for Obtaining	14
		Degree	
2.	24	Minimum Earned Credit and GPA Requirement for Obtaining	15
		Degree Additional Course)	
2.	25	Impacts of Grade Earned	15
2.	26	Classification of Students	15
2.	27	Definition of Graduating Student	16
2.	28	Performance Evaluation	16
2.	29	Application for Graduation and Award of Degree	17
2.	30	Time Limits for Completion of Bachelor's Degree	17
2.	31	Attendance, Conduct and Discipline	17
	2.31	.1 Attendance	17
	2.31	.2 Conduct and Discipline	17
2.	32	Teacher-Student Interaction	17
2.	33	Absence during a Term	17
2.	34	Recognition of Performance	17
2.	35	Types of Different Examinations	18
2.	36	Rules of Different Examinations	18
	2.36	5.1 Term Final Examination	19
	2.36	5.2 Supplementary Examination	19
	2.36	5.3 Improvement Examination	19
2.	37	Irregular Graduation	19
CHAPTER 3			
DEPARTME	ENT OF NA	AVAL ARCHITECTURE AND MARINE ENGINEERING (NAME)	
3.	.1	Introduction to the Program	20
3.	2	Vision and Mission of the Program	20
3.	.3	Faculty Members of NAME department	21
3.	4	Facilities of the department	22
3.	.5	Program Specific Criteria	23
3.	.6	Program Educational Objectives (PEOs)	23
3.	.7	Program Outcomes (POs)	23
3.	.8	Program Educational Objectives (PEOs) and Program Outcomes (POs) Matrix	24
3.	9	Course Outcomes (COs)	24
	.10	Course Content	
	11	Knowledge Profile, Range of Complex Engineering Problem Solving and Range of Complex Engineering Activities	24
3.	.12	Generic Skills	24
	.13	Curricular/Skill Mapping	25

CHAPTER 4

COURSE CURRICULUM OF BACHELOR OF SCIENCE IN NAME

4.1		Course Schedule	26
	4.1.1	Summary of Course Curriculum	26
	4.1.2	Contact hours and credit hours' distribution in eight terms	26
	4.1.3	Distribution of credit hours for different categories of courses in NAME	27
		Dept.	
4.2		Term-Wise Course Distribution	28
	4.2.1	List of Program Core Courses	32
	4.2.2	List of Optional/ Elective Courses	32
	4.2.3	List of Interdisciplinary Courses	33
	4.2.4	List of Basic Science and Mathematics Courses	33
	4.2.6	List of Languages/ Communicative Language	34
	4.2.7	List of General Education Courses	34
CHAPTER 5			
COURSE DESCRI	PTION		
5.1		Program Core Courses	35
5.2		Technical Elective Courses	203
5.3		Interdisciplinary /Other Engineering Courses	299
5.4		Basic Science and Mathematics Courses	331
5.5		Languages/ Communicative Language	375
5.6		General Education Courses	385
	Annex-A	A: Chapter 4. (of BAETE Manual 2019 Version 2) Criteria	426

CHAPTER 1 GENERAL INFORMATION

1.1 Introduction to MIST

The necessity of establishing a technical institute for the Bangladesh Armed Forces was felt in the late eighties. In the absence of such an institution, officers of Bangladesh Armed Forces had been graduating from Bangladesh University of Engineering and Technology (BUET), Bangladesh Institute of Technology (BIT) and other foreign institutions of science and technology. With a view to meet the increasing demand for the development and dissemination of engineering and technological knowledge, Bangladesh Armed Forces established the Military Institute of Science and Technology (MIST) that promises to provide facilities for higher technical education both for the officers of Bangladesh Armed Forces as well as for civil students from home and abroad. The motto of MIST is —Technology for Advancement. Founded on 19 April 1998, MIST started its journey on 31 January 1999 by offering a four-year bachelor's degree on Civil Engineering. Bachelor degree on Computer Science Engineering course started on 2001. Bachelor courses on Electrical, Electronic & Communication Engineering and Mechanical Engineering started its journey from 2003. Bachelor of Science program on Aeronautical Engineering (AE) and Naval Architecture and Marine Engineering (NAME) program were started from 2008-2009 and 2012- 2013 respectively. Besides, four new departments started their academic session from 2014-2015i.e. Nuclear Science & Engineering (NSE), Biomedical Engineering (BME), Architecture (Arch) and Environmental, Water Resources & Coastal Engineering (EWCE).

Foreign students from Sri Lanka were admitted for the first time at MIST. Presently students from Maldives, Palestine, Nepal and Ghambia are also studying in different Engineering Programs. MIST envisages creating facilities for military as well as civil students from home and abroad dedicated to pursue standard curriculum leading to Graduation Degree. As an Institution without any gender biasness, MIST is already on steady stride upholding its motto "Technology for Advancement". MIST remains committed to contributing to the wider spectrum of national educational arena and play a significant role in the development of human resources and ardently pursuing its goal to grow into a "Centre of Excellence". MIST has well equipped class rooms with multimedia and web camera with internet facilities and laboratories with modern equipment. The medium of instruction for all engineering programs is English. All academic programs of MIST are affiliated with the Bangladesh University of Professionals (BUP) and have close cooperation with Bangladesh University of Engineering and Technology (BUET) and Dhaka University (DU).

1.2 Vision and Mission of MIST

Vision: To be a center of excellence for providing quality education in the field of science, engineering and technology and conduct research to meet the national and global challenges.

Mission:

- a. Provide comprehensive education and conduct research in diverse disciplines of science, engineering, technology and engineering management.
- b. Produce technologically advanced intellectual leaders and professionals with high moral and ethical values to meet socio- economic development of Bangladesh and global needs.
- c. Conduct collaborative research activities with national and international communities for continuous interaction with academician and industry.

d. Provide consultancy, advisory, testing and other related services to government, nongovernment and autonomous organization including personnel for widening practical knowledge and to contribute in sustainable development of the society.

1.3 Salient Features of MIST

- a. Rigorous admission and selection process for best possible screening interactive sessions in the classroom.
- b. Regular guest lectures and educational visits.
- c. Culture of timeliness, commitment and uninterrupted curriculum.
- d. Flexibility in choosing competent faculties through outsourcing.
- e. Well thought-out and continuous feedback and assessment system.
- f. Effective teaching through innovative method.
- g. Industrial attachment for on job training.
- h. Emphasis on code of conduct and dress code.
- i. Focus to develop students as good human with all possible attributes of successful leader.
- j. Tranquil, pollution free and secure campus life.

1.4 Location

MIST is located at Mirpur Cantonment, northwest edge of the greater Dhaka city, a hub of knowledge for the armed forces. Mirpur Cantonment is a small, calm and quiet education village and free from all possible pollution of a city life. A garland like lake with migratory birds, three sides with extended green fields in the summer and water bodies in the rainy season, whistling birds on the tree branches and overall bounty of nature adds to the already existing splendid academic atmosphere. Other neighboring academic institutions are National Defense College (NDC) and Defense Services Command and Staff College (DSCSC) – two international standard education centers.

1.5 Faculties

- 1.5.1 Faculty of Civil Engineering (FCE):
 - Civil Engineering (CE)
 - Architecture (Arch)
 - Civil, Environment, Water and Coastal Engineering (CEWCE)
 - Petroleum and Mining Engineering (PME)
- 1.5.2 Faculty of Electrical & Computer Engineering (FECE):
 - Computer Science and Engineering (CSE)
 - Electrical, Electronic and Communication Engineering (EECE)
- 1.5.3 Faculty of Mechanical Engineering (FME):
 - Mechanical Engineering (ME)
 - Aeronautical Engineering (AE)
 - Naval Architecture and Marine Engineering (NAME)
 - Industrial and Production Engineering (IPE)

- 1.5.4 Faculty of Science & Engineering (FSE):
 - Biomedical Engineering (BME)
 - Nuclear Science and Engineering (NSE)
 - Department of Science (Mathematics, Physics, Chemistry) and Humanities (Only Post Graduate)

Presently MIST has 12 (twelve) departments to conduct B Sc. Engineering program under 04(four) different engineering faculties. The departments impart education basing on common objectives and outcomes set by MIST and have defined program objectives and outcomes, specific to the departments respectively.

1.6 Eligibility of Students for Admission in MIST (Subject to review each year)

The students must fulfill the following requirements:

- a. <u>Bangladeshi Students.</u> Minimum qualifications to take part in the admission test are as follows:
 - (1) The applicant must have passed SSC / equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in Science Group obtaining GPA 4.00 (without fourth subject) on a 5-point scale and in HSC/Equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in Science group the applicant must have obtained minimum GPA 4.00 on a 5-point scale. In HSC/Equivalent and SSC/Equivalent examination: (i) the applicant passed HSC or Equivalent in must obtain minimum total grade point 17 in four subjects (Mathematics, Physics, Chemistry and English), (ii) SSC Examination (or Equivalent).
 - (2) The applicant must have qualified in minimum five subjects including Mathematics, Physics, Chemistry and English Language with minimum 'B' in average [i.e. A=5, B=4, C=3, D=2 & E=1, minimum required grade point=20] in GCE 'O' Level and in 'A' level/Equivalent background of Minimum 'B' grade in Mathematics, Physics and Chemistry.
 - (3) Applicants who have passed HSC or Equivalent examination in the current previous year must grade obtain 19 in four subjects (Mathematics, Physics, Chemistry and English).
 - (4) Sex: Male and Female.
- b. <u>Foreign Students.</u> Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through AFD of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:
 - (1) Educational qualifications as applicable for Bangladeshi civil students or equivalent.
 - (2) Must have security clearance from respective Embassy/High Commission in Bangladesh.
 - (3) Sex: Male and Female.

In the event of non-availability of foreign students, Bangladeshi civil candidates will fill up the vacancies.

1.7 Number of Seats

The highest number of seats for 04 (Four) years Bachelor Degree in Engineering programmes (Unit – A) and 5 (Five) years Bachelor Degree of Architecture programme are as follows:

Allocation of Seats

Ser	Unit	Department	Seats
1.		Civil Engineering (CE)	60
2.		Computer Science and Engineering (CSE)	60
3.		Electrical, Electronic & Communication Engineering	60
		(EECE)	
4.		Mechanical Engineering (ME)	60
5.	\mathbf{A}	Aeronautical Engineering (AE)	50
6.		Naval Architecture and Marine Engineering (NAME)	40
7.		Biomedical Engineering (BME)	40
8.		Nuclear Science and Engineering (NSE)	40
9.		Civil & Environmental Engineering	60
10.		Civil & Water Resources Engineering	
11.		Industrial and Production Engineering (IPE)	50
12.		Petroleum and Mining Engineering (PME)	25
13.	В	Architecture (Arch)	25
	Total		570

1.8 Admission Procedure

Syllabus for Admission Test. Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English (comprehension and functional) subjects of HSC examinations of all boards of secondary and higher secondary school certificates. There will be no multiple-choice type questions (MCQ). Admission test will be conducted out of 200 marks and the distribution of marks is given below:

Ser.	Subjects	Marks
a.	Mathematics	80
b.	Physics	60
c.	Chemistry	40
d.	English	20
	Total	200

Final Selection. Students will be selected on the basis of results of the admission test. Individual choice for selection of departments will be given preference as far as possible. Minimum qualifying marks in the test is 40% for the applicants. In case of tie in the result of admission test, difference will be judged on the basis of marks obtained in Mathematics,

Physics, Chemistry and English respectively in admission test.

Medical Checkup. Civil candidates selected through admission test will go for medical checkup in MIST medical center. If the medical authority considers any candidate unfit for study in MIST due to critical/contagious/mental diseases as shown in medical policy of MIST will be declared unsuitable for admission.

1.9 Students Withdrawal Policy

1.9.1 General Policy of Withdrawal

The under graduate (B.Sc.) Engineering programs for all engineering disciplines are planned for 04 regular levels, comprising of 08 regular terms for Architecture programme it is planned for 3 & regular levels, comprising of 10 regular terms. It is expected that all students will earn degree by clearing all the offered courses in the stipulated time. In case of failure the following policies will be adopted:

- a. Students failing in any course/subject will have to clear/pass the said course/subject by appearing it in referred examination as per examination policy. In case of students completing level-4, maximum three courses/subjects will be allowed in the referred examination (which is to be cleared within 6 years of registration).
- b. Referred examination will be conducted at this institution before commencement of next level.
- c. Maximum grading for supplementary examination etc. of failed subjects will be B+ as per examination policy.
- d. One student can retake/reappear in a failed subject/course only twice. However, with the Permission of Academic Council of MIST, a student may be allowed for third time as last chance.
- e. In case of sickness, which leads to missing of more than 40% classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council, MIST. However, he/she has to complete the whole undergraduate program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.
- f. Minimum credit requirement for the award of bachelor's degree in Engineering (Bsc. Engg) and Architecture (B. Arch) will be decided by the respective department as per existing rules. However, the minimum CGPA requirement for obtaining a bachelor degree in engineering and Architecture is 2.20.
- g. Whatever may be the cases, students have to complete the whole undergraduate Program within 06 (six) academic years from the date of registration.
- h. All other terms and condition of MIST Examination Policy remain valid.

1.9.2 Withdrawal on Disciplinary Ground

a. <u>Unfair Means</u>. Adoption of unfair means may result in expulsion of a student from the programme and expulsion so from the Institution. The Academic Council will authorize

such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:

- (1) Communicating with fellow students for obtaining help in the examination.
- (2) Copying from another student's script/ report /paper.
- (3) Copying from desk or palm of a hand or from other incrimination documents.
- (4) Possession of any incriminating document whether used or not.
- b. <u>Influencing Grades.</u> Academic Council may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.
- c. Other Indiscipline Behaviours. Academic Council may withdraw/expel any student on disciplinary ground if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/programme or is considered detrimental to MIST's image.
- d. <u>Immediate Action by the Disciplinary Committee of MIST.</u> The Disciplinary Committee, MIST may take immediate disciplinary action against any student of the Institution. In case of withdrawal/expulsion, the matter will be referred to the Academic Council, MIST for post-facto approval.

1.9.3 Withdrawal on Own Accord

- a. **<u>Permanent Withdrawal.</u>** A student who has already completed some courses and has not performed satisfactorily may apply for a withdrawal.
- b. <u>Temporary Withdrawal.</u> A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to approval of Academic Council of MIST, he will be allowed to apply fresh in future batch. If approved from the date of his/her registration.

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMME AT MIST

2.1 <u>Introduction</u>

MIST has introduced course system for undergraduate studies from the academic session 2017-

18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering undergraduate curriculum through the Course System. This will be introduced with an aim of creating a continuous, even and consistent workload throughout the term for the students.

2.2 The Course System

The salient features of the Course System are as follows:

- a. Number of theory courses will be generally 5 in each term. However, with the recommendation of course coordinator and Head of the Department, Commandant MIST may allow relaxation in this regard. This relaxation is to be reported to Academic Council of MIST.
- b. Students will not face any level repeat for failing.
- c. Students will get scope to improve their grading.
- d. Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences.
- e. Continuous evaluation of students' performance.
- f. Promotion of student-teacher interaction and contact.
- Beside the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics and chemistry. Due importance is also given on the study of several subjects in humanities and social sciences.
- 222 The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science and humanities subjects; while the third and subsequent years focus on specific disciplines.

2.3 Number of Terms in a Year

There will be two terms (Spring Term I and Fall Term II) in an academic year.

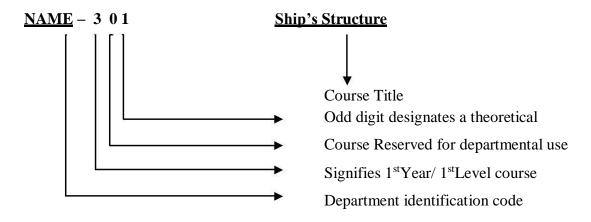
2.4 <u>Duration of Terms</u>

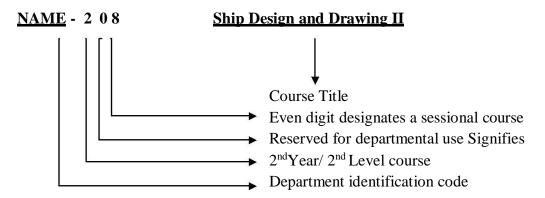
The duration of each of Term I (spring) and Term II (fall) (maximum 22 weeks) may be as under

Ser	Events	Durations
1.	Classes before Mid Term	7 weeks
2.	Mid Term Vacation	1 week
3.	Classes after Mid Term	7 weeks
4.	Makeup Classes and Preparatory leave	2/3 weeks

5.	Term Final Examination	2/3 weeks
6.	Term End Vacation	1/2 week

2.5 Course Pattern and Credit Structure


The undergraduate program is covered by a set of theoretical courses along with a set of laboratories (sessional) courses to support them.


2.6 Course Designation System

Each course is designated by a maximum of four letter code identifying the department offering the course followed by a three-digit number having the following interpretation:

- a. The first digit corresponds to the year/level in which the course is normally taken by the students.
- b. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.
- c. The last digit is an odd number for theoretical courses and an even number for sessional courses.

The course designation system is illustrated as Follows:

2.7 Assignment of Credits

The assignment of credits to a theoretical course follows a different rule from that of a sessional course.

- a. **Theoretical Courses:** One lecture per week per term is equivalent to one credit.
- b. **Sessional Courses:** Credits for sessional courses is half of the class hours per week per term.
- c. **Project and Thesis Courses**: Credits are also assigned to project and thesis work taken by the students. The amount of credits assigned to such work varies from one discipline to another.

2.8 Types of Courses

The types of courses included in the undergraduate curricula are divided into the following groups:

- a. **Core Courses:** In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has to complete the entire designated core courses of his/her discipline.
- b. **Prerequisite Courses:** Some of the core courses are identified as prerequisite courses for a specific subject.
- c. **Optional Courses:** Apart from the core courses, the students can choose from a set of optional courses. A required number of optional courses from a specified group have to be chosen.

2.9 Course Offering and Instruction

- a The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department.
- b. Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of students' performance. Depending on the strength of registered students (i.e. on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

2.10 Teacher Student Interaction

The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction, each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

2.11 Students' Adviser

One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.

- a. However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the student's specific plan of study and monitor subsequent progress of the student.
- b. For a student of second and subsequent terms, the number and nature of courses for which he/she can register is decided on the basis of academic performance during the previous term. The adviser may permit the student to drop one or more courses based on previous academic performance.

2.12 Course Registration

Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.

2.13 Registration Procedure

At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her adviser. The date, time and venue of registration are announced in advance by the Registrar's Office. Counseling and advising are accomplished at this time. It is absolutely essential that all the students be present for registration at the specified time.

2.14 Pre-conditions for Registration

- a. For first year students, department-wise enrollment/admission is mandatory prior to registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrolment slip.
- b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.
- c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of pre-requisite courses. However, even if a student fails in a pre-requisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the pre-requisite course provided that his/her attendance and performance in the continuous assessment of the mentioned pre-requisite course is found to be satisfactory.

2.15 Registration Deadline

Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic

commitments that prohibit enrollment prior to the last date of registration.

2.16 Penalty for Late Registration

Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

2.17 Limits on the Credit Hours to be Taken

- **217.1** A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.
- 2172 In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Comdt, a lesser number of credit hours to suit individual requirements. Such cases are also applicable to students of Level 4 requiring less than 15 credit hours for graduation.

2.18 Course Add/Drop

- **2.18.1** A student has some limited options to add or drop courses from the registration list. Addition of courses is allowed only within the first two weeks of a regular. Dropping a course is permitted within the first four weeks of a regular term.
- **2.18.2** Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the Registrar's Office, where the required numbers of photocopies are made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student.
- **2.18.1** All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

2.19 Withdrawal from a Term

If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree awarding department for total withdrawal from the term before commencement of term final examination. However, application may be considered during term final examination in special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

2.20 The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment and a term final examination. The assessments for sessional courses are made by evaluating performance of the student at work during the class, vivavoce during laboratory hours and quizzes. Besides that, at the end there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightages. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree. Letter grades and corresponding grade points will be given as follows:

Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to below 80%	A	3.75
70% to below 75%	A-	3.50
65% to below 70%	B+	3.25
60% to below 65%	В	3.00
55% to below 60%	B-	2.75
50% to below 55%	C+	2.50
45% to below 50%	С	2.25
40% to below 45%	D	2.00
below 40%	F*	0.00
Incomplete	I	-
Withdrawal	W	-
Capstone Project/Thesis continuation	X	-

^{*} Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA)

2.21 Marks Distribution

221.1 Theory: Forty percent (40%) marks of a theoretical course shall be allotted for continuous assessment, i.e. quizzes, home assignments, class tests, observations/ class participation and class attendance. These marks must be submitted to Office of the Controller of Examinations before commencement of final exam. The rest of the marks will be allotted to the Term Final Examination. The duration of final examination will be three (03) hours. The scheme of continuous assessment that a particular teacher would follow for a course will be announced on the first day of the classes. Distribution of marks for a given course per credit is as follows:

Class Performance	5%
Class Test/ Assignment	20%
Mid Term Assessment (Exam / Project)	15%
Final Examination (Section A & B)	60%
Total	100%

221.2 Sessional/Practical Examinations: Sessional courses are designed and conducted by the concerned departments. Examination on sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by the respective department. Students will be evaluated in the sessional courses on the basis of the followings (all or as decided by the Examination Sub-Committee):

Total	100%
Viva Voce	10%
Final Evaluation (exam/project/assignment)	30%
Mid-Term Evaluation (exam/project/assignment)	20%
Report Writing/ Programming	15%
Conduct of Lab Tests/Class Performance	25%

2213 Sessional Course in English: The distribution will be as under:

Class performance/observation	10%
Written Assignment	15%
Oral Performance	25%
Listening Skill	10%
Group Presentation	30%
Viva Voce	
Total	100%

221.4 <u>Class Attendance</u>: Class attendance may be considered as a part of continuous assessment. No mark should be allotted for attending classes.

2.22 Calculation of GPA

Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C_1, C_2, \ldots, C_n and his grade points in these courses are G_1, G_2, \ldots, G_n respectively then

$$GPA = \frac{Grade\ points\ earned\ in\ the\ semester}{Credits\ complete in\ the\ semester}$$

 $GPA = \frac{\sum (Credit\ hours\ in\ a\ course \times Grade\ points\ earned\ in\ that\ course)}{Credits\ complete \ in\ the\ semester}$

$$GPA = \frac{\sum_{i=1}^{n} (C_i \times G_i)}{\sum_{i=1}^{n} C_i}$$

The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes terms having total credits of TC_1 , TC_2 ,...., TC_n and his GPA in these terms are GPA_1 , GPA_2 ,..... GPA_n , respectively then

$$CGPA = \frac{\sum_{i=1}^{n} TC_i \times GPA_i}{\sum_{i=1}^{n} TC_i}$$

Numerical Example

Suppose a student has completed eight courses in a term and obtained the following grades:

Course	Credit Ci	Grade Points	Gi	Ci*Gi
NAME 107	3.00	A+	4.00	12.00
CHEM 101	3.00	A+	4.00	12.00
PHY 101	3.00	A+	4.00	12.00
MATH 101	3.00	A+	4.00	12.00
GEBS 101	2.00	A	3.75	7.50
LANG 102	1.50	A+	4.00	6.00
ME 150	1.50	A	3.75	5.625
CHEM 122	1.50	A	3.75	5.625
SHOP 180	1.50	A+	4.00	6.00
Total	20.00			78.75

GPA =
$$78.75/20 = 3.9375 \approx 3.94$$

Suppose a student has completed four terms and obtained the following GPA.

Lowel	Т.	Earned Credit Hours	Earned GPA	TC:*CDA:
Level	Term	TCi	GPA_i	TCi*GPAi
1	I	20.00	3.94	78.80
1	II	21.00	3.84	80.64
2	I	20.25	20.25 3.92	
2	II	20.25	3.98	80.60
Total		81.50		319.42

2.23 <u>Minimum Earned Credit and GPA Requirement for Obtaining Degree</u>

Minimum credit hour requirements for the award of bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided as per existing rules. The minimum CGPA requirement for obtaining a Bachelor's degree in engineering and other discipline is 2.20.

2.24 <u>Minimum Earned Credit and GPA Requirement for Obtaining Degree (Additional Course)</u>

Minimum credit hour requirements for the award of bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided by the respective department (BUGS). However, at least 157 credit hours for engineering must be earned to be eligible for graduation. This must include the specified core courses. The minimum GPA requirement for obtaining a Bachelor's degree in Engineering and Architecture is 2.20. A student may take additional courses with the consent of his Advisor in order to raise GPA, but he/she may take a maximum of 15 such additional credits beyond

respective credit-hours requirements for Bachelor's degree during entire period of study.

2.25 Impacts of Grade Earned

The courses in which a student has earned a 'D' or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an 'F' grade will not be counted towards his/her earned credits or GPA calculation. However, the 'F' grade will remain permanently on the Grade Sheet and the Transcript.

- a. A student who obtains an 'F' grade in a core course will have to repeat that particular course. However, if a student gets an 'F' in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an 'F', he/she will not be eligible to get a grade better than 'B+' in that repeated course.
- b. If a student obtains a grade lower than 'B+' in a particular course he/she will be allowed to repeat the course only once for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than 'B+' for an improvement course.
- c. A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in B. Arch. Program.
- d. If a student obtains a 'B+' or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

2.26 Classification of Students

At MIST, regular students are classified according to the number of credit hours completed/ earned towards a degree. The following classification applies to all the students:

Level	Credit	Credit Hours Earned				
	Engineering	Architecture				
Level 1	0.0 to 36.0	0.0 to 34.0				
Level 2	More than 36.0 to 72.0	More than 34.0 to 72.0				
Level 3	More than 72.0 to 108.0	More than 72.0 to 110.0				
Level 4	More than 108.0	More than 110.0 to 147.0				
Level 5		More than 147.0				

- **2.26.1** However, before the commencement of each term all students other than new batch are classified into three categories:
 - a **Category 1:** This category consists of students who have passed all the courses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.
 - b Category 2: This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.
 - c. Category 3: This category consists of students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at

least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.

2.27 Definition of Graduating Student

Graduating students are those students who will have \leq 24 credit hour for completing the degree requirement.

2.28 Performance Evaluation

The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.

- **2.28.1** Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists:
 - a. The term GPA falls below 2.20.
 - b. The Cumulative Grade Point Average (CGPA) falls below 2.20.
 - c. The earned number of credits falls below 15 times the number of terms attended.
- **2.28.2** All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and backlog courses, if there are any, with better grades. When the minimum GPA and credit requirements are achieved the student is again returned to good standing.

2.29 Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

2.30 Time Limits for Completion of Bachelor's Degree

A student must complete his studies within a maximum period of six years for engineering and seven years for architecture.

2.31 Attendance, Conduct and Discipline

MIST has strict rules regarding the issues of attendance in class and discipline.

2.31.1 <u>Attendance:</u> All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to

attend classes regularly and one is required to attend the classes as per MIST rules.

2.31.2 <u>Conduct and Discipline</u>: During their stay in MIST all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms and drug abuse and addiction are strictly observed in the campus.

2.32 Teacher-Student Interaction

The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator (CC) is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for academic matters. Heads of the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

2.33 Absence during a Term

A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an F grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g. CMH/MIST Medical Officer).

2.34 Recognition of Performance

As recognition of performance and ensure continued studies MIST awards medals, scholarships and stipends will be given as per existing rules and practices.

2.35 Types of Different Examinations (Subject to change for different academic session)

Following different types of final Examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:

- a. <u>Term Final Examination:</u> At the end of each normal term (after 22 wk or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.
- b. **Supplementary Examination:** It will take place twice in a year. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun)/ Fall Term(Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec)/ Spring Term (Jan-Jun) end

break respectively. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II

c. <u>Improvement Examination</u>: It will be taken during Supplementary-I and Supplementary-II examination. Questions will be same as the question of the regular examination of that Final Examination (if any). Student can take two subjects at a time and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than 'B+' in a course, he/she will be allowed to repeat the course only once for grade improvement. However, he/she will not be eligible to get a grade better then 'B+' for an improvement course. Among the previous result and improvement examination result, best one will be considered as final result for an individual student. However, performance of all examination i.e previous to improvement examination shall be reflected in the transcript.

2.36 Rules of Different Examinations (Subject to change for different academic session)

236.1 Term Final Examination. Following rules to be followed:

- a. Registration to be completed before commencement of the class. A student has to register his desired courses paying registration, examination fee and other related fees.
- b. Late registration will be allowed without penalty within first one week of the term.
- c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/ refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.
- d. Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.
- e. Term Final Examination to be conducted in the 18-20th week of the term as per approved Academic Calendar.

2362 Supplementary Examination. Following rules to be followed:

- a. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun)/ Fall Term(Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec)/ Spring Term (Jan-Jun) end break respectively.
- b. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.
- c. No class will be conducted.
- d. 40% marks on continuous assessment will be considered from previous term.
- e. Highest grade of supplementary examination will be 'B+'.
- f. No sessional exam will be conducted.
- g. Examination will be taken on 60% marks like Term Final examination.
- h. If a student fails in a course more than once in regular terms, then best one of all continuous assessment marks (40%) will be counted.

- i. If anyone fails in the laboratory/sessional course, that course cannot be taken in the supplementary.
- j. If any student fails in a course, he can clear the course retaking it 2nd time or, he can clear the examination appearing at the supplementary examination as well. Any one fails twice in a course, can only retake it in the regular term appearing third time. But anyone fails 3rd time in a course consecutively, he has to take approval of Academic Council of MIST for appearing 4th time in a course and need to pay extra financial penalty. If any students fails even 4th time in a course, will not be allowed to appear anymore in this same course.
- k. Registration of supplementary-I exam to be done within 5th wk after completion of fall term (July to Dec) and registration of supplementary-II exam to be done during Mid-Term of spring (Jan to Jun).
- 1. There will be no provision for add/drop courses after registration.
- m. Question setting, Moderation, Result Publication will be done following the same rules of Term Final Examination as per Examination Policy.
- n. Moderation of the questions for supplementary-I will be done in 5th wk after completion of Fall Term (July to Dec) Final Exam and Supplementary –II with the moderation of the questions of Spring Term (Jan to Jun).
- o. Separate Tabulation sheet to be made.
- p. **Thesis:** If a student cannot complete the thesis in two consecutive terms, with the recommendation of supervisor, he/she may continue for next one/two term within six academic years.

2363 Improvement Examination. Following rules to be followed:

- a. Improvement examination is to be taken during Supplementary-II and Supplementary-II.
- b. For Improvement examination, registration is to be done during the registration of Supplementary-I and Supplementary-II examination paying fees.
- c. Question setting, Moderation and Result publication to be done with courses of Supplementary-I and Supplementary-II examinations.
- d. Any student gets a grading below 'B+' and desires to improve that course; he will be allowed to appear the improvement examination for that particular course.
- e. Highest grade of Improvement examination will be 'B+'.
- f. One student is allowed to appear at Improvement exam in 6 (six) courses in his whole graduation period taking maximum two courses at a time.

2.37 Irregular Graduation

If any graduating student clears his/her failed course in Term-1 and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Term-1 and that student will be allowed to apply for provisional certificate.

CHAPTER 3 DEPARTMENT OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

3.1 Introduction to the program

Our Lord, Almighty, has created human being in a state of weakness, but blessed with extra ordinary divine intelligence and engineers amongst us who could perceive the need of time. In this regard, maritime related engineering is one of the important aspects in the history of civilization and ships are one of the oldest forms of transport used by human being.

Naval architecture has been an inherent part of the evolution of ships or crafts, and naval architecture and marine engineering is a very interesting branch of study. Graduates in this field of study have actually duel degrees. In one way these graduates are naval architects, and another way they are marine engineers. Study in NAME provides insight to design, to build, to operate and to maintain vessels which move just above, on or under the sea. It can be said that naval architects connect nation to nation and civilization to civilization through rivers, seas and oceans. Basically, a good naval architect is he who can acquire required knowledge of designing and building marine vehicles satisfactorily, and utilize such knowledge for the benefit of mankind.

To be prepared for the professional tasks, students of naval architecture are primarily studying hydrodynamic theories and concerned computational methods to develop efficient hull form to be operated at desired movability with minimum energy consumption. Secondly, they have to go through material science in depth to build better quality ships to be sustainable in unfriendly weather conditions at sea. As the field of naval architecture is the part and parcel of mechanical engineering, it is impossible to be a good naval architect without being a good mechanical engineer, and knowledge on mechanics, theory of machine, heat transfer, diesel engine, gas turbine, nuclear power, fuel cells, pumps, compressor, refrigeration, air- conditioning etc is absolutely essential. Moreover, machinery controls, whether it is mechanical, pneumatic or electronic, control engineering expertise for the marine engineers is also required.

Above all, today's technology is computer based and no ship is designed without the use of software. It is now the demand of the day to have upper hand on computer programming language and numerical simulations to bring forward what the graduating students are principally learning in the field of naval architecture and marine engineering. The last but not the least is the humanities and the management for efficient cost estimation, human resource management and enhancement of leadership.

3.2 Vision and Mission of the Program

- a. **Vision:** To be national and international centre of excellence offering a study programme of high quality, innovation and creativity in the field of Naval Architecture and Marine Engineering.
- b. Mission: To produce engineers and researchers with sound knowledge on fundamentals of traditional, modern and emerging areas of Naval Architecture and Marine Engineering together with innovative design abilities and managerial skills to achieve sustainable national development.

3.3 Faculty Member of NAME

a. <u>Military Faculty Members</u>

- Commodore M Muzibur Rahman, (E), psc, BN
- Captain Kaosar Rashid, (E), psc, BN
- Commander M Golam Mohiuddin, (E), BN
- Lt Col Muhammad Rabiul Islam, PhD, EME
- Commander M Masum Ul Haque, (E), BN
- Major Osman M Amin, PhD, Engrs
- Major S M Kamuruzzaman, EME

b. <u>Civil Faculty Members</u>

- Professor M Munir Hassan
- Assistant Professor Dr. S M Ikhtiar Mahmud
- Assistant Professor Md. Touhidul Islam
- Assistant Professor Md. Mezbah Uddin
- Lecturer Md Daluar Hussain
- Lecturer Tasmia Haque
- Lecturer Kazi Rafi Rahaman
- Lecturer Kaniza Islam
- Lecturer Mohammed Jubair Dipto
- Lecturer A S M Araf Raihan

c. Guest Faculty Members

- Former Professor Dr. Md. Sadiqul Baree, NAME department, BUET
- Former Professor Dr. Md. Reaz Hasan Khondoker, NAME department, BUET
- Professor Dr. S Reaz Ahmed, ME department, BUET
- Professor Dr. M. Rafiqul Islam, NAME department, BUET
- Professor Dr. Md. Shahjada Tarafder, NAME department, BUET
- Professor Dr. Goutam Kumar Saha, NAME department, BUET
- Professor Dr. Nayeb Md. Golam Zakaria, NAME department, BUET
- Professor Dr. Md. Mashiur Rahaman, NAME department, BUET
- Associate Professor Dr. Zobair Ibn Awal, NAME department, BUET

3.4 Facilities of the Department

The NAME department endeavors to provide its faculty members and students adequate laboratory, library and other facilities to undertake undergraduate courses. Since the engineering education is laboratory intensive, following laboratories are catered for such requirements:

- (1) Computer Aided Ship Design Lab
- (2) Ships Structure and Fabrication Lab
- (3) Marine Machinery Lab
- (4) Ship Instrument Lab
- (5) Damage Control Fire Fighting and Life Saving Lab

- (6) Ship Propulsion Lab
- (7) Ship Resistance Lab
- (8) Machine Tools Lab
- (9) Model Fabrications Lab
- (10) Towing tank stability Lab
- (11) Marine Transportation Lab
- (12) Hydrodynamics Lab
- (13) Auxiliary Machinery Lab
- (14) Marine Electronics Lab

In addition to above laboratories, NAME students have to undertake laboratory courses (sessional) in Physics, Chemistry, Workshop, Electrical Engineering and Civil Engineering too. If necessary undergraduate students can have the access to the facilities of other departments and centers during their project, thesis and research works.

Besides the stated laboratories, NAME department has established "Ship Design and Marine Structural Solution Center" to take the challenge of professional engineering to an eminent level.

3.5 Program-Specific Criteria

Criteria for Naval Architecture and Marine Engineering or Similar Program according to BAETE Manual 2 have been described in this paragraph. The program must prepare graduates to apply probability and statistical methods to naval architecture and marine engineering problems; to have basic knowledge of fluid mechanics, dynamics, structural mechanics, materials properties, hydrostatics, and energy/propulsion systems in the context of marine vehicles; and to have familiarity with instrumentation appropriate to naval architecture and/or marine engineering.

3.6 Program Educational Objectives (PEOs)

No	PEO Statement
PEO-1	Graduates of Naval Architecture and Marine Engineering will develop a sound
	knowledge on mathematical, scientific and engineering fundamentals and advanced
	knowledge of understanding in the sector of ship design, ship building and marine
	engineering including analysis techniques, design, developments and
	implementation methodologies to solve critical technical problems related to this field.
PEO-2	Graduates of Naval Architecture and Marine Engineering will acquire technical and
	communicative knowledge with professional and industry based education to build up
	successful professional careers in shipbuilding and maritime industries, government
	organizations and academia.
PEO-3	Graduates of Naval Architecture and Marine Engineering will understand sustainable
	engineering practice, socio-ethical values and life-long continuous learning to adapt the
	innovation and changes in this sector.
PEO-4	Graduates of Naval Architecture and Marine Engineering will be capable of working
	in the broader area of technology having the capability and responsibility of leadership
	and teamwork.
PEO-5	Graduates of Naval Architecture and Marine Engineering will be able to positively
	contribute in national and global cultural, social, technological, economic and

educational development of society through the ethical application of their knowledge and skills.

3.7 **Program Outcomes (POs)**

Program Outcomes (POs) represent the knowledge, skills and attitudes the students should have at the end of a four-year engineering program. Based on the suggestion of Board of Accreditation for Engineering and Technical Education (BAETE), Bangladesh, the Naval Architecture and Marine Engineering (NAME) program has following 12 Program Outcomes:

- **PO-1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO-2. Problem analysis:** Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.
- **PO-3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.
- **PO-4. Investigation:** Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **PO-5. Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6.** The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- **PO-7. Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge for sustainable development.
- **PO-8. Ethics:** Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.
- **PO-9. Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
- **PO-10. Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
- **PO-11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of

a team to manage projects in multi-disciplinary environments.

PO-12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

3.8 Program Educational Objectives (PEOs) and Program Outcomes (POs) Matrix

PO	PEO-1	PEO-2	PEO-3	PEO-4	PEO-5
PO-1. Engineering knowledge	1				
PO-2. Problem analysis	1	√			
PO-3. Design/development of solutions	1				
PO-4. Investigation	1				
PO-5. Modern tool usage		√			
PO-6. The engineer and society					$\sqrt{}$
PO-7. Environment and sustainability			√		$\sqrt{}$
PO-8. Ethics		√	√		
PO-9. Individual work and teamwork		√		$\sqrt{}$	
PO-10. Communication		√		$\sqrt{}$	
PO-11. Project management and finance		√		$\sqrt{}$	$\sqrt{}$
PO-12. Life-long learning			1		

3.9 <u>Course Outcomes (COs)</u>

The Course Outcomes (COs) are the resultant knowledge skills the student acquires at the end of a course. It defines the cognitive processes a course provides. Chapter five contains the detailed Learning/course Outcomes for each of the courses under the heading of Course Outcomes (COs). Faculty members are allowed to modify the Course Outcome (CO) as Continuous Quality Improvement (CQI) while conducting a course on the basis of requirements consulting with Head of the department and senior faculty members having expertise and specialization of that respective course.

3.10 Course Contents

The course contents of all courses have been described in chapter five. Faculty members are allowed to modify the course contents as a part of Continuous Quality Improvement (CQI) while conducting a course on the basis of requirements consulting with Head of the department and senior faculty members having expertise and specialization of that respective course.

3.11 <u>Knowledge Profile, Range of Complex Engineering Problem Solving and Range of Complex Engineering Activities</u>

Details mapping criteria for Knowledge Profile, Range of Complex Engineering Problem Solving and Range of Complex Engineering Activities has been attached as Annex-A.

3.12 Generic Skills

The graduates of the NAME program are expected to have the following generic skills:

- a. Ability to apply the principles and theory of Naval Architecture and Marine Engineering knowledge to the requirements, design and development of different ship and marine systems with appropriate understanding.
- b. Ability to define and use appropriate research methods and modern engineering tools.
- c. Ability to apply critical thinking to solve complex engineering problems and design innovative solutions.
- d. Ability to analyze real time problems and justify the appropriate use of technology.
- e. Ability to work effectively as an individual, and as a member or leader of a team in diverse situations and exhibit social responsibility.

3.13 <u>Curriculum/ Skill Mapping</u>

The courses of NAME program are designed in such a way that the corresponding Course Outcomes (COs) contribute to the 12 Program Outcomes (POs) which eventually achieves the mission and vision of the program. Chapter five contains the mapping for each of the courses. However, generic curriculum/ skill mapping is shown in figure 3.1.

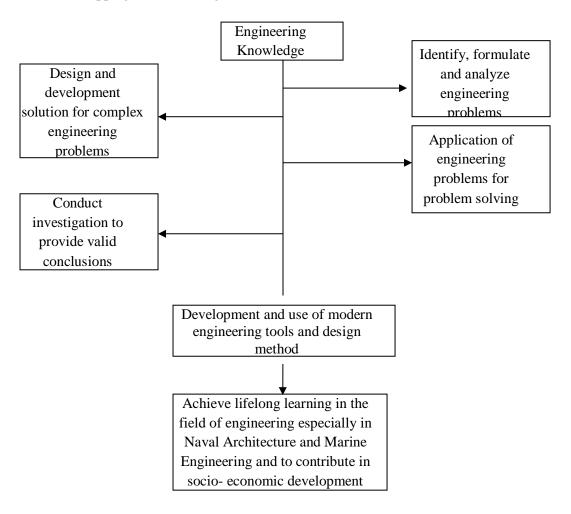


Figure 3.1: Generic Skills Mapping

CHAPTER 4 COURSE CURRICULUM OF BACHELOR IN NAME

4.1 <u>Course Schedule</u>

Keeping the above mentioned program outcomes, the course schedule for the undergraduate students of the Department of Naval Architecture and Marine Engineering is given below.

4.1.1. <u>Summary of Course Curriculum</u>

Ser	Catagowy	No of	Courses	Cr	. Hr.	Total	% of Total
Ser	Category	Theory	Sessional	Theory	Sessional	Cr. Hr.	Cr. Hr.
1	Languages/						
	Communicative	-	2	-	3.0		
	Language					21.0	13.12
2	General	8	1	16.0	2.0		
	Education	0	1	16.0	2.0		
3	Basic Science	3	2	9.0	3.0	24.0	15.0
4	Mathematics	4	-	12.0	-	24.0	13.0
5	Interdisciplinary						
	/Other	3	4	10.0	6.0	16.0	10.0
	Engineering						
6	Program Core	19	17	57.0	30.0	87.0	54.38
7	Technical	4		12.0		12.0	7.5
	Electives	4	-	12.0	_	12.0	7.5
	Total	41	26	116.0	44.0	160.0	100

4.1.2. Contact hours and credit hours' distribution in eight terms

Level & Term	Theory Credit Hours	Sessional Credit Hours	Total Credit Hours	Cumulative Cr. Hr.	Theory Contact Hours	Sessional Contact Hours	Total Contact Hours
1-I	14.0	6.0	20.0	20.0	14.0	12.0	26.0
1-II	15.0	6.0	21.0	41.0	15.0	12.0	27.0
2-I	15.0	5.0	20.0	61.0	15.0	10.0	25.0
2-II	15.0	4.5	19.5	80.5	15.0	9.0	24.0
3-I	16.0	4.5	20.5	101.0	16.0	9.0	25.0
3-II	14.0	6.5	20.5	121.5	14.0	13.0	27.0
4-I	13.0	6.0	19.0	140.5	13.0	9+4 wks	22+4 wks
4-II	14.0	5.5	19.5	160.0	14.0	11.0	25.0
Total	116.0	44.0	160.0		116.0	85.0+4 wks	201.0 +4 wks

	4.1.3 Distribu	4.1.3 Distribution of credit hours for different categories of courses in NAME Dept.	r different categories	of courses in NAM	E Dept.	
Category Ser.	1	2	e	4	w	9
Level	Languages/ Communicative Language and General Education	Basic Science and Mathematics	Interdisciplinary /Other Engineering	Program Core	Technical Electives	Total
1-1	2.0	10.5	3.0	4.5	-	20.0
1-II	1.5	7.5	4.5	7.5	-	21.0
2-I	1.5	3.0		15.5	-	20.0
2-11	2.0	3.0	7.0	7.5	-	19.5
3-I	4.0	-	1.5	15.0	-	20.5
3-11	4.0	-		13.5	3.0	20.5
4-I	4.0	-		12.0	3.0	19.0
4-II	2.0	-	-	11.5	6.0	19.5

4.2 <u>Term Wise Distribution of Courses</u>

LEVEL-1 TERM-1

Course No	Course Name	Credit Hours	Contact Hours	Remarks
Theory Cou	rses	I.	•	1
	Introduction to Naval Architecture and Marine Engineering	3.0	3.0	Program Core
CHEM 101	Fundamentals of Chemistry	3.0	3.0	Basic Science
MATH 101	Differential Calculus and Integral Calculus	3.0	3.0	Mathematics
PHY 101	Wave Oscillation, Geometrical Optics and Modern Physics	3.0	3.0	Basic Science
GEBS 101	Bangladesh Studies	2.0	2.0	General Education
Sessional Courses				
CHEM 102	Chemistry Lab	1.5	3.0	Basic Science
PHY 102	Physics Lab	1.5	3.0	Basic Science
ME 150	Mechanical Engineering Drawing	1.5	3.0	Interdisciplinary
SHOP 180	Workshop Practice (Foundry, Welding and Machine Shop)	1.5	3.0	Interdisciplinary
	Total Course (5T+4S)	20.0	26.0	

LEVEL-1 TERM-2

Course No	Course Name	Credit Hours	Contact Hours	Remarks
Theory				
NAME 157	Hydrostatics and Stability	3.0	3.0	Program Core
NAME 177	Thermal Engineering	3.0	3.0	Program Core
CSE 115	Computer Programming Language	3.0	3.0	Interdisciplinary
MATH 103	Differential Equation and Matrix	3.0	3.0	Mathematics
PHY 113	Structure of Matter, Electricity and Magnetism	3.0	3.0	Basic Science
Sessional				
NAME 158	Basic Ship Design	1.5	3.0	Program Core
NAME 178	Thermal Engineering Lab	1.5	3.0	Program Core
LANG 102	Communicative English-I	1.5	3.0	Language
CSE 116	Computer Programming Lab	1.5	3.0	Interdisciplinary
	Total Course (5T+4S)	21.0	27.0	

LEVEL-2 TERM-1

Course No	Course Name	Credit Hours	Contact Hours	Remarks
Theory		•		
NAME 201	Mechanics of Structure	3.0	3.0	Program Core
NAME 205	Shipbuilding Materials and Metallurgy	3.0	3.0	Program Core
NAME 207	Ship Design	3.0	3.0	Program Core
NAME 213	Fluid Mechanics	3.0	3.0	Program Core
MATH 201	Vector Analysis, Laplace and Coordinate	3.0	3.0	Mathematics
	Geometry			
Sessional				
NAME 208	Computer Aided Ship Design	2.0	4.0	Program Core
NAME 214	Fluid Mechanics Lab	1.5	3.0	Program Core
LANG 202	Communicative English-II	1.5	3.0	Language
	Total Course (5T+3S)	20.0	25.0	

LEVEL-2 TERM-2

Course No	Course Name	Credit	Contact	Remarks
		Hours	Hours	Acmarks
Theory				
NAME 253	Marine Hydrodynamics	3.0	3.0	Program Core
ME 277	Heat Transfer	3.0	3.0	Interdisciplinary
EECE 281	Marine Electrical and Electronics	4.0	4.0	Interdisciplinary
MATH 219	Statistics, Complex Variable and Fourier	3.0	3.0	Mathematics
	Analysis			
GELM 275	Leadership & Management	2.0	2.0	General Education
Sessional				
NAME 202	Mechanics of Structure Lab	0.75	1.5	Program Core
NAME 206	Shipbuilding Materials and Metallurgy Lab	0.75	1.5	Program Core
NAME 254	Marine Hydrodynamics Lab	1.5	3.0	Program Core
NAME 258	Stability and Machinery Layout Design	1.5	3.0	Program Core
	Total Course (5T+4S)	19.5	24.0	

LEVEL-3 TERM-1

Course No	Course Name	Credit Hours	Contact Hours	Remarks
Theory		•	•	
NAME 301	Ship Structure	3.0	3.0	Program Core
NAME 315	Ship Construction and Welding Technology	3.0	3.0	Program Core
NAME 353	Ship Resistance and Propulsion	3.0	3.0	Program Core
NAME 311	Machine Elements Design	3.0	3.0	Program Core
GEE 303	Fundamentals of Economics	2.0	2.0	General Education
GES 305	Fundamentals of Sociology	2.0	2.0	General Education
Sessional				
NAME 300	Ship Design Project	1.5	3.0	Program Core
NAME 308	Application of ship design software	1.5	3.0	Program Core
EECE 382 Marine Electrical and Electronics Lab		1.5	3.0	Interdisciplinary
	Total Course (6T+2S+1P)	25.0		

LEVEL-3 TERM-2

Course No	Course Name	Credit Hours	Contact Hours	Remarks
Theory				
NAME 307	Design of Special Ships	3.0	3.0	Program Core
NAME 309	Marine Engineering-I	3.0	3.0	Program Core
NAME 363	Numerical Methods	3.0	3.0	Program Core
GESL 311	Environment, Sustainability and Industrial	2.0	2.0	General Education
	Law			
NAME 3XX	Optional Course 1*	3.0	3.0	Technical Electives
Sessional				
NAME 300	Ship Design Project	1.5	3.0	Program Core
NAME 310	Marine Engineering Lab-I	1.5	3.0	Program Core
NAME 354	Ship Resistance and Propulsion Lab	1.5	3.0	Program Core
GERM 352	Fundamentals of Research Methodology	2.0	4.0	General Education
	Total Course (5T+3S+1P)	20.5	27.0	

st Optional Courses will be offered as required from the subjects mentioned in para 4.5 (i).

LEVEL-4 TERM-1

Course No	Course Name	Credit Hours	Contact Hours	Remarks	
Theory					
NAME 403	Dynamics of Marine Vehicles	3.0	3.0	Program Core	
NAME 409	Marine Engineering -II	3.0	3.0	Program Core	
GEA 407	Principles of Accounting	2.0	2.0	General Education	
GEPM 471	Project Management and Finance	2.0	2.0	General Education	
NAME 4XX	Optional Course 2*	3.0	3.0	Technical Electives	
Sessional					
NAME 400	Research Project/ Thesis	3.0	6.0	Program Core	
NAME 464	Numerical Methods Lab	1.5	3.0	Program Core	
NAME 450	Shipyard Practice/Industrial Training	1.5	4 Weeks	Program Core	
	(4 Weeks)**				
	Total Course (5T+2S+1RP) 19.0 22.0+4 W				

^{*} Optional Courses will be offered as required from the subjects mentioned in para 4.2.2 (ii)

LEVEL-4 TERM-2

Course No	Course Name	Credit Hours	Contact Hours	Remarks
Theory				
NAME 457	Maritime Economics and Management	3.0	3.0	Program Core
NAME 459	Marine Maintenance and Repair Engineering	3.0	3.0	Program Core
GEEM 441	Engineering Ethics and Moral Philosophy	2.0	2.0	General Education
NAME 4XX	Optional Course 3*	3.0	3.0	Technical Electives
NAME 4XX	Optional Course 4*	3.0	3.0	Technical Electives
Sessional				
NAME 400	Research Project/Thesis	3.0	6.0	Program Core
NAME 410	Marine Engineering Lab-II	1.5	3.0	Program Core
NAME 490 Bangladesh Studies for Naval Architects		1.0	2.0	Program Core
	Total Course (5T+2S+1RP)	19.5	25.0	

^{*} Optional Courses will be offered as required from the subjects mentioned in para 4.2.2 (ii).

^{** 04} Weeks Industrial/Shipyard Training course will be conducted as NAME-450 on completion of level 3 before commencing level 4.

4.2 .1 Program Core Courses

Ser.	Course Code	Course Title	Type of Course	Credit Hour	Level & Term
1.	NAME 107	Introduction to Naval Architecture and Marine Engineering	Theory	3.00	L-1, T-1
2.	NAME 157	Hydrostatics and Stability	Theory	3.00	L-1, T-2
3.	NAME 158	Basic Ship Design	Sessional	1.50	L-1, T-2
4.	NAME 177	Thermal Engineering	Theory	3.00	L-1, T-2
5.	NAME 178	Thermal Engineering Lab	Sessional	1.50	L-1, T-2
6.	NAME 201	Mechanics of Structure	Theory	3.00	L-2, T-1
7.	NAME 202	Mechanics of Structure Lab	Sessional	0.75	L-2, T-1
8.	NAME 205	Shipbuilding Materials and Metallurgy	Theory	3.00	L-2, T-1
9.	NAME 206	Shipbuilding Materials and Metallurgy Lab	Sessional	0.75	L-2, T-2
10.	NAME 207	Ship Design	Theory	3.00	L-2, T-1
11.	NAME 208	Computer Aided Ship Design	Sessional	2.00	L-2, T-1
12.	NAME 213	Fluid Mechanics	Theory	3.00	L-2, T-1
13.	NAME 214	Fluid Mechanics Lab	Sessional	1.50	L-2, T-1
14.	NAME 253	Marine Hydrodynamics	Theory	3.00	L-2, T-2
15.	NAME 254	Marine Hydrodynamics Lab	Sessional	1.50	L-2, T-2
16.	NAME 258	Stability and Machinery Layout Design	Sessional	1.50	L-2, T-2
17.	NAME 300	Ship Design Project	Sessional	3.00	L-3, T-1
18.	NAME 301	Ship Structure	Theory	3.00	L-3, T-1
19.	NAME 307	Design of Special Ships	Theory	3.00	L-3, T-2
20.	NAME 308	Application of ship design software	Sessional	3.00	L-3, T-1
21.	NAME 309	Marine Engineering -I	Theory	3.00	L-3, T-2
22.	NAME 310	Marine Engineering Lab -I	Sessional	1.50	L-3, T-2
23.	NAME 311	Machine Elements Design	Theory	3.00	L-3, T-1
24.	NAME 315	Ship Construction and Welding Technology	Theory	3.00	L-3, T-1
25.	NAME 353	Ship Resistance and Propulsion	Theory	3.00	L-3, T-1
26.	NAME 354	Ship Resistance and Propulsion Lab	Sessional	1.50	L-3, T-2
27.	NAME 363	Numerical Methods	Theory	3.00	L-3, T-2
28.	NAME 400	Research Project/ Thesis	Sessional	6.00	L-4, T-1
29.	NAME 403	Dynamics of Marine Vehicles	Theory	3.00	L-4, T-1
30.	NAME 409	Marine Engineering -II	Theory	3.00	L-4, T-1
31.	NAME 410	Marine Engineering Lab -II	Sessional	1.50	L-4, T-2
32.	NAME 450	Shipyard Practice/Industrial Training	Sessional	1.50	L-4, T-1
33.	NAME 457	Maritime Economics and Management	Theory	3.00	L-4, T-2
34.	NAME 459	Marine Maintenance and Repair Engineering	Theory	3.00	L-4, T-2
35.	NAME 464	Numerical Methods Lab	Sessional	1.50	L-4, T-1
36.	NAME 490	Bangladesh Studies for Naval Architects	Sessional	1.00	L-4, T-2

4.2.2 Elective/Optional Courses

i. One theoretical course will be registered for level 3 term 2 as offered from the following list (Optional 1):

	Ser.	Course Code	Course Title	Type of Course		Level & Term
Ī	1.	NAME 371	Finite Element Method for Ship Structure	Theory	3.00	L-3, T-1/2

2.	NAME 373	Computational Fluid Dynamics (CFD)	Theory	3.00	L-3, T-1/2
3.	NAME 375	Composite Materials	Theory	3.00	L-3, T-1/2
4.	NAME 387	Port and Harbor Engineering	Theory	3.00	L-3, T-1/2
5.	NAME 389	Marine Production and Planning	Theory	3.00	L-3, T-1/2

ii. One theoretical course will be registered at the first term of level four and two courses at the second term of level four as offered from the following list (Optional 2,3,4):

6.	NAME 431	Ship Hull Vibration	Theory	3.00	L-4, T-1/2
7.	NAME 435	Computer Aided Ship Production	Theory	3.00	L-4, T-1/2
8.	NAME 437	Inland Water Transportation System	Theory	3.00	L-4, T-1/2
9.	NAME 445	Dredger and Dredging Technology	Theory	3.00	L-4, T-1/2
10.	NAME 447	Maritime Transportation System	Theory	3.00	L-4, T-1/2
11.	NAME 453	Power and Propulsion System	Theory	3.00	L-4, T-1/2
12.	NAME 463	Ship Performance	Theory	3.00	L-4, T-1/2
13.	NAME 465	Navigation and Maritime Regulations	Theory	3.00	L-4, T-1/2
14.	NAME 477	Control Engineering	Theory	3.00	L-4, T-1/2
15.	NAME 481	Optimization Method in Ship Design	Theory	3.00	L-4, T-1/2
16.	NAME 483	Theory of Hydrofoils	Theory	3.00	L-4, T-1/2
17.	NAME 489	Introduction to Offshore Structure	Theory	3.00	L-4, T-1/2
18.	NAME 493	Marine Acoustics	Theory	3.00	L-4, T-1/2
19.	NAME 499	Shipyard Management	Theory	3.00	L-4, T-1/2

4.2.3 <u>Interdisciplinary Courses</u>

Ser.	Course Code	Course Title	Type of Course	Credit Hour	Level & Term
1.	CSE 115	Computer Programming Language	Theory	3.00	L-1, T-2
2.	CSE 116	Computer Programming Language Lab	Sessional	1.50	L-1, T-2
3.	EECE 281	Marine Electrical and Electronics	Theory	4.00	L-2, T-2
4.	EECE 382	Marine Electrical and Electronics Lab	Sessional	1.50	L-3, T-1
5.	ME 150	Mechanical Engineering Drawing	Sessional	1.50	L-1, T-1
6.	SHOP 180	Workshop Practice	Sessional	1.50	I 1 T 1
		(Foundry, Welding and Machine Shop)		1.30	L-1, T-1
7.	ME 277	Heat Transfer	Theory	3.00	L-2, T-2

4.2.4 Science and Math Courses

Ser.	Course Code	Course Title	Type of Course	Credit Hour	Level & Term
1.	CHEM 101	Fundamentals of Chemistry	Theory	3.00	L-1, T-1
2.	CHEM 102	Chemistry Lab	Sessional	1.50	L-1, T-1
3.	PHY 101	Wave Oscillation, Geometrical Optics and Modern Physics	Theory	3.00	L-1, T-1
4.	PHY 102	Physics Lab	Sessional	1.50	L-1, T-1
5.	PHY 113	Structure of Matter, Electricity and Magnetism	Theory	3.00	L-1, T-2
6.	MATH 101	Differential and Integral Calculus	Theory	3.00	L-1, T-1
7.	MATH 103	Differential Equations and Matrix	Theory	3.00	L-1, T-2
8.	MATH 201	Vector Analysis, Laplace and Coordinate Geometry	Theory	3.00	L-2, T-1

9.	MATH 219	Statistics, Complex Variable and Fourier Transform	Theory	3.00	L-2, T-2
----	----------	--	--------	------	----------

4.2.5 Language Courses

Ser.	Course Code	Course Title	Type of Course	Credit Hour	Level & Term
1.	LANG 102	Communicative English-I	Sessional	1.50	L-1, T-2
2.	LANG 202	Communicative English-II	Sessional	1.50	L-2, T-1

4.2.6 General Education Courses

Ser.	Course Code	Course Title	Type of Course	Credit Hour	Level & Term
1.	GEBS 101	Bangladesh Studies	Theory	2.00	L-1, T-1
2.	GELM 275	Leadership & Management	Theory	2.00	L-2, T-2
3.	GEE 303	Fundamentals of Economics	Theory	2.00	L-3, T-1
4.	GES 305	Fundamentals of Sociology	Theory	2.00	L-3, T-1
5.	GESL 311	Environment, Sustainability and	Theory	2.00	L-3, T-2
		Industrial Law			
6.	GERM 352	Fundamentals of Research Methodology	Sessional	2.00	L-3, T-2
7.	GEA 407	Principles of Accounting	Theory	2.00	L-4, T-1
8.	GEEM 441	Engineering Ethics and Moral Philosophy	Theory	2.00	L-4, T-2
9.	GEPM 471	Project Management and Finance	Theory	2.00	L-4, T-1

<u>CHAPTER 5</u> COURSE DESCRIPTION

PROGRAM CORE COURSES

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 107 Credit Hours: 3.0
Course Title: Introduction to Naval Architecture and Marine Engineering Contact Hours: 3.0

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Introduction to Naval Architecture and Marine Engineering is compulsory theoretical course which will give a brief overview on basic naval architectural and marine engineering knowledge e.g. naval architectural terms, ship dimensions and forms, various drawings in ship design. It also enables students to familiarize themselves with ship propulsion system and machinery.

OBJECTIVES

- 1. To know ship's different terminology and identify them.
- 2. To make proficient to describe concepts regarding specification of ships dimensions and forms.
- 3. To enable achieving ability to explain displacement, lightweight, deadweight, capacity and tonnage.
- 4. To enable to apply approximation methods to calculate area, centroid & volume.
- 5. To familiarize with General Arrangement (GA), shell expansion & lines plans.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Define** ship's different terminology & **identify** them.
- 2. Comprehend basic ideas of specification of ships dimensions and forms, tonnage.
- 3. Calculate waterplane area, volume & prepare vessel's displacement curve.
- 4. **Identify** & **describe** General Arrangement (GA), shell expansion & lines plans.

COURSE CONTENTS

- 1. Introduction to the course and naval architecture
- 2. The shape of a ship, Ship particulars, definition of various ship terms
- 3. Area, moments and centre of gravity calculations
- 4. Weight and centre of gravity, displacement and centre of buoyancy, Archimedes law of floating bodies
- 5. Light weight, dead weight, capacity and tonnage, Sub-division elements of ship hull
- 6. Ship's form coefficients, their applicability and significance, calculation of form coefficients

- 7. Numerical integration in naval architecture: Simpson's rules, trapezoidal rule, five-eightminus one rule, application of these rules to find area, moment (first and second) of area, centre of gravity calculation etc., errors and limitation of these rules
- 8. Ship geometry definition and representation, lines plan and offset table, sectional area curve and its uses
- 9. Ship design procedure, various ship drawings and their content, use of these drawings
- 10. Introduction to ship propulsion arrangements, ship's propulsion system and her machinery; deck machinery; arrangement of machinery
- 11. Introduction to ship systems: bilge ballast system, FO bunkering and delivery system, FW system; fire-fighting system, black and grey water system, power generation and distribution system etc.
- 12. Various ship fittings; spares; consumables and stores

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO))					
140.	COURSE OUTCOMES (COS)	1 2 3 4 5 6 7			8	9	10	11	12			
CO1	Define ship's different terminology &	V										
COI	identify them.	٧										
CO2	Comprehend basic ideas of specification of	N										
CO2	ships dimensions and forms, tonnage.	l v										
CO3	Calculate waterplane area, volume & prepare			٦/								
COS	vessel's displacement curve.			V								
CO4	Identify & describe General Arrangement		1									
	(GA), shell expansion & lines plans.		V									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Define ship's different terminology & identify them.	C1			1-4	CT, F
CO2	Comprehend basic ideas of specification of ships dimensions and forms, tonnage.	C2			1-4	CT, Mid Term, F
CO3	Calculate waterplane area, volume & prepare vessel's displacement curve.	C3	1		5	CT/ASG, F
CO4	Identify&describeGeneralArrangement (GA), shell expansion &lines plans.	C1			1-4	Mid Term, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications					
CO1-PO1	The knowledge of mathematics and science has to be applied to understand ship's					
	different terminology & identify them.					
CO2-PO1	Students will be to comprehend basic ideas of specification of ships dimensions and					
	forms, tonnage with the help of fundamental engineering knowledge of the course.					
CO3-PO3	Students will be to estimate waterplane area, volume & prepare vessel's					
	displacement curve to give design solution for ship design.					
CO4-PO2	The engineering knowledge of the course will help the students to identify &					
	describe General Arrangement (GA), shell expansion & lines plans.					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment				
Week 1	Ship's terms					
Class 1	Introduction to NAME					
Class 2	Brief discussion on syllabus, Class Test (CT), mid-term and final exam,					
	mark distribution					
Class 3	L _{OA} , L _{BP} , L _{WL} , moulded breadth, moulded depth, moulded draught,					
	freeboard, air draft, camber, sheer					
Week 2	Ship's terms	CT-1, Final				
Class 4	Flare, stem, stern; skeg; transom; deck; poop deck; forcastle deck; 'tween	Exam				
	deck; deckhouse and superstructure;					
Class 5	Ship's weight and centre of gravity, longitudinal centre of gravity (LCG);					
	vertical centre of gravity (VCG); importance of LCG and VCG in ship					
	design; trim; heel and list;					
Class 6	Displacement, longitudinal centre of buoyancy, vertical centre of					
	buoyancy, Archimedes principle; Six degrees of motion of a ship: surge,					

	sway, heave, roll, pitch and yaw;				
Week 3	Ship's terms				
Class 7	Light weight, dead weight, capacity; tonnage: net tonnage and gross				
	tonnage; International Convention on Tonnage Measurement of Ships, 1969.				
Class 8	Bulkhead: longitudinal and transverse, cofferdam, double bottom; double hull;				
Class 9	Miscellaneous terminology related to ship and ocean structure;				
Week 4	Hull form coefficients				
Class 10	Block coefficient, midship section coefficient, prismatic coefficient, water				
	plane area coefficient,				
Class 11	Problem on form coefficients				
Class 12	Assessment 01 (CT-1)				
Week 5	Numerical integration in Naval Architecture [part 1]	CT-2, Mid			
Class 13	Numerical integration in naval architecture; the trapezoidal rule; error of integration in trapezoidal rule;	Term, Final Exam			
Class 14	Mathematical problems on trapezoidal integration;				
Class 15	Simpon's first rule; intermediate ordinate				
Week 6	Numerical integration in Naval Architecture [part 2]				
Class 16	Simpson's second rule; intermediate ordinate;				
Class 17	Five-eight-minus one rule, six ordinates rule;				
Class 18	Problems of Simpson's first and second rule;				
Week 7	Ship geometry				
Class 19	Ship coordinate system; ship geometry definition: keel; rise of floor; fall				
	in side; bilge radius; tumble home; parallel middle body; entrance, run;				
	angle of entrance; deadrise angle; kunckle; bulbous bow				
Class 20	Station; waterline; buttock; diagonal; sectional area curve and its uses;				
Class 21	Assessment 02 (CT-2)				
Week 8	Ship design procedure and main drawings				
Class 22	Ship design process; Basic (main) drawings in ship design;	Mid Term			
Class 23	IACS and its members; mission and vision of IACS;	Exam, Final Exam			
Class 24	General arrangement (GA) drawing of different types of ships;	Exam			
Week 9	Main (Basic) drawings in ship design				
Class 25	Midship section; lines plan and offset table;				
Class 26	Profile and deck plan; shell expansion;				
Class 27	Machinery arrangement; accommodation arrangement; fire and safety				
XX 1.10	plan; mooring arrangement; system diagrams and other drawings;				
Week 10	Ship propulsion system & Machinery				
Class 28	Introduction to ship propulsion arrangements				
Class 29	Machinery & equipment fitted onboard ship, Machinery & fittings fitted on ship propulsion system				
Class 30	Assessment 02(Mid-term exam)				
Week 11	Ship propulsion system & Machinery				
Class 31	Main propulsion engine, heat engine basics.				
Class 31 Class 32	Classification of engine				
Class 33	Cycle of operation of engine				
C1033 JJ	Cycle of operation of engine				

Week 12	Ship propulsion system & Machinery	CT-3/
Class 34	Parts of engine	Assignment,
	Difference between diesel & petrol engine	Final Exam
Class 35	Basic idea about other power generation machinery	
Class 36	Revision of Ship propulsion system & Machinery	
Week13	Ship systems	
Class 37	Introduction to ship systems: bilge ballast system, FO bunkering and	
	delivery system,	
Class 38	FW system; fire-fighting system, black and grey water system	
Class 39	power generation and distribution system etc.	
Week 14	Ship propulsion system & machinery	
Class 40	Basic idea ship fittings, spares, consumables and stores.	
Class 41	Assessment 04 (CT-3)	
Class 42	Course review	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	mponents	Grading	COs	Blooms Taxonomy
	Class Test/		CO1	C1, C2
Continuous	Assignment 1-3	20%	CO2	C1,C2
Assessment	Assignment 1-3		CO3	C3, C4
(40%)	%) Class Participation 5%		CO4	C1, A2
	Mid term	15%	CO2, CO4	C1, C2, C3
			CO1	C1, C2
E	Final Exam		CO2	C1, C2, C4
1.1	nai Exam	60%	CO3	C1, C3, C4
			CO4	C2, C3, C4
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Ship Knowledge, Klan Van Dokkam, Dokmer Publisher.
- 2. The Principles of Naval Architecture Series, The Geometry of Ships, John S. Letcher Jr. SNAME
- 3. Reed's Naval Architecture for Marine Engineers, E.A. Stokoe, 2003, Thomas Reed Publications.
- 4. Theoretical Naval Architecture, E.L. Attwood & H.S. Pengelly, 1962, Longmans Green & Co. Ltd.
- 5. Basic Ship Theory, K.J. Rawson & E. C. Tupper, Vol. 1 & 2., Longman Group Limited.
- 6. A Textbook of Thermal Engineering, R.S. Khurmi & J.K. Gupta

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 157 Credit Hours: 3.00
Course Title: Hydrostatics and Stability Contact Hours: 3.00

Level and Term: Level 1 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This is a compulsory course enables students to learn the principles of equilibrium of forces act on a floating body, means to asses intact and damage stability of ships and their statutory requirements. This course also deals with launching of ships once it is built as well as the inclining experiment which measures the weight and centre of gravity of lightship.

OBJECTIVES

- 1. To impart knowledge on hydrostatics calculations and hydrostatic curves.
- 2. To familiarize the students with the principle of intact and damage stability of ships.
- 3. To make proficient to produce ships' docking and launching calculations.
- 4. To enable to conduct inclining experiment and prepare report for approval or regulatory bodies.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Compute** hydrostatic properties of ship and **construct** hydrostatic curves.
- 2. **Comprehend** basic ideas of intact and damage stability of ship.
- 3. **Prepare** vessel's docking and launching calculations.
- 4. **Perform** inclining experiment of floating structures.

COURSE CONTENTS

- 1. Introduction; concepts of equilibrium; weight and centre of gravity; displacement and centre of buoyancy.
- 2. Initial stability; metacentric height: longitudinal and transverse metacentric diagram.
- 3. Hydrostatic properties; hydrostatic and Bonjean curves; their uses.
- 4. Statical stability, righting arm; curves of statical stability and its application; cross curves of stability and its uses, effect of trim, depth and form on statical stability; significance of curve of statical stability; dynamical stability and its measurement;
- 5. Free surface effect; calculation of free surface moments; effect of free surface on righting lever curves; means to reduce free surface effect.
- 6. Weight and trim calculations; effect of change of water density; top weight etc.
- 7. Inclining experiment: purpose; preparation; experiment; calculation and generation of report.

- 8. Intact stability: measurement of stability; IMO code of intact stability: mandatory criteria for all ships; stability criteria for special purpose ships; weather criterion; wind heeling moment; intact stability load cases.
- 9. Subdivision and damage stability: effects of damage of ship hull; SOLAS conventions; watertight subdivisions, curves of floodable length; permeability; evaluation of damage stability: added weight and lost buoyancy method; deterministic and probabilistic means to assess damage stability; sub-division length; factor of subdivision; required subdivision index; attained subdivision index;
- 10. Stability during dry-docking; launching calculations.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)							
140.	COURSE OUTCOMES (COS)	1 2 3 4 5 6		6	7	8	9	10	11	12			
CO1	Compute hydrostatic properties of ship and	J											
COI	construct hydrostatic curves.	٧											
CO2	Comprehend basic ideas of intact and damage	1											
CO2	stability.	٧											
CO3	Prepare vessel's docking and launching			1									
COS	calculations.			>									
CO4	Perform inclining experiment of floating				1								
	structure.				V								

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	CP	CA	KP	Assessment Methods
CO1	Compute hydrostatic properties of ship and construct hydrostatic curves.	C3	1		1-4	CT, F
CO2	Comprehend basic ideas of intact and damage stability.	C2	1		1-4	CT, MT, F
CO3	Prepare vessel's docking and launching calculations.	C3	3		5	CT/ASG, F
CO4	Perform inclining experiment of floating structures.	A2	1		8	MT, F

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term

JUSTIFICATIONS OF CO-PO MAPPAING

Exam)

Mapping	Justifications						
CO1-PO1	The knowledge of mathematics and science has to be applied to calculate						
	hydrostatic parameters and develop the effects of draught change on them.						
CO2-PO1	In order to identify the role and extent of hydrostatic parameters on the principles of						
	intact and damage stability of ships.						
CO3-PO3	To analyze vessels' hydrostatic and hydrodynamic parameters for docking and						
	launching calculations.						

CO4-PO4	In order to ascertain the level of stability of the vessel and maintenance of upright
	position at lightship/ designated loading conditions.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment		
Week 1	Introduction			
Class 1	Introduction, course administration, motivation lecture			
Class 2	Concepts of equilibrium: stable, neutral and unstable equilibrium; weigh	nt		
	and centre of gravity; displacement and centre of buoyancy;			
Class 3	Interaction between weight and buoyancy; righting moment; overturning	g		
	moment; upsetting forces on a ship; submerged equilibrium;			
Week 2	Vessels weights, centre of gravity and metacentric height	CT 1,		
Class 4	Determining vessels weights and centre of gravity;	Final Exam		
Class 5	Initial stability and metacentric height; Transverse metacentre an	d		
	transverse metacentric height; location of transverse metacentric heigh	t;		
	metacentric diagram; Stiff Ship and Tender Ship.			
Class 6	Longitudinal metacentre and longitudinal metacentric height; location of	·		
	longitudinal metacentric height; application of metacentric height			
Week 3	Hydrostatic curves			
Class 7	Waterplane area; centre of floatation (LCF); moment of inertia of the	ie		
	water plane area; displacement; centre of buoyancy (LCB, VCB);			
Class 8	TPC; BM _T ; BM _L ; MCT1cm; KM _L ; KM _T ; wetted surface area			
Class 9	Hydrostatic curves, Bonjean curves and their uses			
Week 4	Statical stability at large angles of heel [part-1]			
Class 10	Assessment 1			
Class 11	Righting arm; curves of statical stability; down-flooding angle;			

Class 31	Special criteria for certain types of ships: passenger ships;	
Week 11	IMO code of intact stability [part-2]	
	criterion);	
Class 30	Wind speed; gust; roll period; severe wind and rolling criterion (weather	Final Exam
	L - L	Mid Term,
Class 29	The IMO code of intact stability; criteria regarding righting lever curve	
	immersion angle;	
Class 28	Watertight and weathertight opening; down-flooding points; deck edge	
Week 10	IMO code of intact stability [part-1]	
	gravity of vessel;	
Class 27	Inclining experiment setup; determination of lightship and centre of	
Class 26	The inclining experiment; determination of inclining weight;	
Class 25	Determining displacement and center of gravity from drafts;	
Week 9	The inclining experiment	
Class 24	Mid-term exam	ı ınaı Exall
Class 23	Determining drought often shows in loading:	Mid Term, Final Exan
Class 22	Finding trim and draughts at perpendiculars;	MC 4 Tr
Week 8	Weight and Trim calculations [part-2]	
Class 21	Draught marks; trim; trimming moment	
Class 20	Weight groups; weight and centre of gravity calculations;	
Class 19	Assessment 2	
Week 7	Weight and Trim calculations [part-1]	
Class 18	Reduction of free surface effect;	
Class 17	Evaluation of effect of free-surface on righting arm;	
Class 10	height;	
Class 16	Effect of free liquids Free-surface effect; evaluation of effect of free-surface on metacentric	
Class 15 Week 6	Representation of heeling moment	
C1 15	stability curve.	
Class 14	Effect of changes of from on statical stability; Significance of the statical	Final Exan
C1 1.4	beam and depth on statical stability;	CT 2,
Class 13	Cross curves of stability; computation of righting arm curves; effect of	
Week 5	Statical stability at large angles of heel [part-2]	
	of loll; dynamical stability;	
	Effect of freeboard and metacentric height on righting arm curves; angle	

	method to calculate floodable length			
Class 38	IMO SOLAS convention, Chapter II-1, Part B-Subdivision and stability;	CT 3,		
Class 39	ss 39 Subdivision length; factor of subdivision; required subdivision index;			
	attained subdivision index;			
Week 14	Launching calculations]		
1				
Class 40	Assessment 3			
Class 40 Class 41	Ü			

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	370	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	al Exam	600/	CO2	C1, C2,C4
FIII	ıı exaiii	60%	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. The Principles of Naval Architecture, Vol 1, Stability and Strength, Published by SNAME
- 2. Ship Hydrostatics and Stability, Adrian Biran
- 3. Reed's Naval Architecture for Marine Engineers, E.A. Stokoe, 2003, Thomas Reed Publications.
- 4. Theoretical Naval Architecture, E.L. Attwood & H.S. Pengelly, 1962, Longmans Green & Co. Ltd.
- 5. Basic Ship Theory, K.J. Rawson & E. C. Tupper, Vol. 1 & 2., Longman Group Limited.
- 6. Ship Stability for Masters and Mates, D. R Derrett.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 158
Course Title: Basic Ship Design
Contact Hours: 3.00

Level and Term: Level 1, Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This is a compulsory sessional course designed to teach students about the basic design drawings of different types of ship. Students will be able to perform necessary calculations related to the basic design, trim and stability calculations. It is expected that students can develop critical thinking behind each design features, able to check effects of those features using calculations and finally select the appropriate feature.

OBJECTIVES

- 1. To familiarize students with different types of ships, their General Arrangement and enable them to produce the same.
- 2. To acquaint students with the Lines Plan and teach them to draw Lines Plan in different scales including Bonjean curves.
- 3. To enable students to compute hydrostatic properties and to draw hydrostatic curves of ships.
- 4. To evaluate trim and stability calculations of ship with respect to statutory requirement.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Produce** General Arrangement of different types of ships.
- 2. **Develop** Lines Plan of ships.
- 3. **Assess** the loading on vessel using Bonjean curves.
- 4. **Compute** hydrostatic properties of ships to **produce** hydrostatic curves and **prepare** trim and stability calculation on ship design

COURSE CONTENTS

- 1. General arrangement (GA) plan drawing,
- 2. Lines plan drawing, Bonjean curves,
- 3. Hydrostatic calculations, and Stability and cross curves,
- 4. Trim calculations,
- 5. Inclining Experiment.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

Ī	No.	COURSE OUTCOME (COs)			PR()GI	RAN	ΙО	UT	CO	ME	S (PC	Os)	
	110.	COURSE OUTCOME (COS)	1	2	3	4	5	6	7	8	9	10	11	12
ſ	CO1	Produce general arrangement of ships												

	and floating structures.							
CO2	Develop lines plan of ship.							
CO3	Assess the loading on vessel using	2						
COS	Bonjean curves	>						
	Compute hydrostatic properties of ships							
CO4	to produce hydrostatic curves and	drostatic curves and						
CO4	prepare trim and stability calculation	V						
	on ship design							

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Produce general arrangement of ships and floating structures.	С3	-		-	R,Q,T
CO2	Develop lines plan of ship.	C3	-		-	R,Q,T
CO3	Assess the loading on vessel using Bonjean curves	C3, C3	1		1-4	R,Q,T
CO4	Compute hydrostatic properties of ships to produce hydrostatic curves and prepare trim and stability calculation on ship design	C3	1		1-4	R,Q,T

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO12	In order to develop concept design and general arrangement plan.
CO2-PO12	To link up the general arrangement to lines plan and offset table.
CO3-PO1	In order to assess the loading on vessel using Bonjean curves.
CO4-PO1	In order to practice hydrostatic calculations, trim and stability criteria at different loading conditions.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3

Total 120	Total	120
-------------	-------	-----

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method

COURSE SCHEDULE

Week	Topics
Week 1	Course introduction, Introduction to general arrangement plan, objectives,
	components, different types of GA, etc.
Week 2	Drawing of General Arrangement Plan
Week 3	Review of General Arrangement Plan
Week 4	Introduction to Lines Plan, Drawing of Lines Plan
Week 5	Review of Lines Plan drawing
Week 6	Drawing of Bonjean Curves
Week 7	Mid Viva
Week 8	Hydrostatic Calculation Using Excel
Week 9	Hydrostatic Calculation Using Excel
Week 10	Hydrostatic Calculation Using Excel
Week 11	Intact stability calculations
Week 12	Cross curve of stability
Week 14	Inclining experiment
Week 13	Final Viva

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	mponents	Grading	COs	Bloom's Taxonomy
			CO 1	C1, C3,A1
	Lab participation	20%	CO 2	C4, C5, A1
	and Report	2070	CO 3	C3, C4
Continuous			CO 4	C3
Assessment			CO 1	C1, C3,C4
(40%)	Labtest-1,Labtest-2	30%	CO 2	C4, C5, P1
(4070)			CO 3	C3, C4
			CO 4	C3
	Project and Presentation	25%	CO 1, CO 2, CO 3	A1, A2, A3, A4
			CO 1	CO 2
Τ,	Lab Quiz	25%	CO 2	CO 3
1	Lao Quiz	2370	CO 3	C3, P6, P7
			CO 4	C3
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Reed's Naval Architecture for Marine Engineers, E.A. Stoked, 2003, Thomas Reed Publications.
- 2. Ship Stability for Masters and Mates, D. R Derrett.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 177 Credit Hours: 3.0 Course Title: Thermal Engineering Contact Hours: 3.0

Level and Term: Level 1 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course will provide the basic knowledge of thermal engineering, which will function as foundation in applications in major fields of Naval Architecture and Marine Engineering notably in heat engines, air conditioning, refrigeration, steam turbine and gas turbine system.

OBJECTIVES

- 1. To introduce the basic concepts of thermodynamics, laws of thermodynamics and practical applications of thermodynamics
- 2. To familiarize with various types of air standard cycles and their applications.
- 3. To familiarize with various types of non-conventional power generation system

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** the basic concepts of Thermal Engineering.
- 2. **Explain** and **apply** basic thermodynamic principles and laws to **analyse** and **predict** performance of idealized forms of thermodynamic systems.
- 3. **Relate** idealized thermodynamic cycles to corresponding real systems.
- 4. **Explain** properties of steam
- 5. **Identify** components of IC engine, refrigeration system, air conditioning system and steam boiler and **perform** calculations of their efficiency.
- 6. **Describe** sources of non-conventional energy.

COURSE CONTENTS

1. Introduction and Basic Concepts of Thermodynamics and Thermal Engineering

Basic concepts of thermodynamics: introduction, applications, system, surrounding universe, zeroth law, properties of a system, state, process, path function, cycle, pure substance, control volume, work interaction and closed system work. Ideal gas equation for various process, closed system work for various process, open system work for various process.

2. First Law and its application (Non Flow Process)

Concept of heat and specific heat, first law of thermodynamics. Energy of an isolated system, PMM-I, concept of internal energy and enthalpy. Heat transfer for various process for closed system. Meyer's Equation, important thermodynamic relations and cycle concepts, polytrophic

and adiabatic process.

3. Second Law of Thermodynamics and Entropy

Kelvin-Planck and Clausius statement, Equivalence of Kelvin-Planck and Clausius statement. Carnot Cycle, Carnot theorem, corollary of Carnot theorem and efficiency and COP of reversible cycle, Clausius inequality, numerical problem based on 2nd law of thermodynamics.

4. Gas Power Cycles and Application

Basic consideration in the analysis of power cycle, air standard assumptions, an overview of reciprocating engine, Otto Cycle, Diesel Cycle, Brayton Cycle, Dual Combustion Cycle.

5. Properties of pure substance and Mixture of Gas and Vapor

Formation and Properties of Steam and Entropy of Steam, Properties of T-H diagram, T-V diagram, P-V diagram, T-S and H-S diagram for water and steam, Mollier Diagram, terminologies for steam, Advantages of Superheated steam, Entropy of water, dry steam, superheated steam.

6. Internal Combustion Engine Basics

Concept on Heat Engine and classifications, IC engine basic components, Working Principle of a two stroke/ four stroke Engine, Advantages & Disadvantages.

7. Refrigeration, Air Conditioning System and Phychrometry

Basic concepts on Refrigeration and Air Conditioning, Type of Refrigeration Process, Schematic and T-S Diagram Refrigeration cycle, Air Conditioning Types, Study of psychrometric chart

8. Steam Boiler and Steam Turbine

Classification of boilers by mentioning the bases, Different types of boiler with their schematic and salient features, four accessories of Boiler: function and uses, Use of air-preheater, superheater, fusible plug and safety valve for a boiler. Steam turbine cycle, Schematic and T-S diagram, Turbine Staging; Pressure and velocity profile of turbine, Combined Cycle Power Plant (CCPP).

9. Non-Conventional Power Generation

Basic concepts on non-conventional/ renewable energy sources, thermal power plants, Solar Energy, Geothermal Energy, Energies from Sea, Nuclear Energy and Nuclear Power Plant.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO))			
No.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Describe the basic concepts of Thermal Engineering.	1											
CO2	Explain and apply basic thermodynamic principles and laws to analyse and predict performance of idealized forms of thermodynamic systems.		√										
CO3	Relate idealized thermodynamic cycles to corresponding real systems.	1											
CO4	Explain properties of steam												
CO5	Identify components of IC engine, refrigeration system, air conditioning system and steam boiler and perform calculations of their efficiency.		V										
CO6	Describe sources of non-conventional energy.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the basic concepts of Thermal Engineering.	C1			1	СТ
CO2	Explain and apply basic thermodynamic principles and laws to analyse and predict performance of idealized forms of thermodynamic systems.	C2,C3	1		1-4	CT/ASG, F
CO3	Relate idealized thermodynamic cycles to corresponding real systems.	C3			1-4	MT, F
CO4	Explain properties of steam	C2			1	
CO5	Identify components of IC engine, refrigeration system, air conditioning system and steam boiler and perform calculations of their efficiency.	C1, A2		1	2-4	CT, F
CO6	Describe sources of non-conventional energy.	C1			1	Pr, MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	Students will be able to understand and describe the basic concepts of thermal
	engineering with the help of the basic fundamental knowledge of the course.
CO2-PO2	Students will gain knowledge on basic thermodynamic principles, laws and
	formulation. With the help of this knowledge, they will be able to analysis the
	problems related to thermodynamic systems and predict performances applying
	mathematics.
CO3-PO1	Applying basic knowledge of the thermodynamic cycles, students will be able to
	relate the idealized form of cycle with corresponding real systems.
CO4-PO1	Gaining fundamental knowledge on properties of steam, students will be able to
	explain properties of steam.
CO5-PO2	Students will gain the ability to identify the components of IC engine, refrigeration
	system, air conditioning system and steam boiler and they will be able to perform
	calculations of efficiency of mentioned systems applying the knowledge of
	mathematical formulation.
CO6-PO1	Students will be able to describe sources of non-conventional energy with the basic
	knowledge of natural science.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment						
Week 1	Introduction and Basic Concepts of Thermodynamics and Thermal							
	Engineering							
Class 1	Basic concepts of thermodynamics: introduction, applications, system,							
	surrounding universe							
Class 2	Basic concepts of thermodynamics: zeroth law, properties of a system,							
	state, process, cycle, pure substance, control volume							
Class 3	Work interaction and closed system work (Work is related to a system and	CT 1						
	surrounding closed system work = $\int P dv$)							
Week 2	Introduction and Basic Concepts of Thermodynamics and Thermal							
	Engineering (Contd.)							
Class 4	a) Ideal gas equation for various process							
	b) Closed system work for various process							
Class 5	a) Key note (observation of thermodynamic process)							
	b) open system work							
Class 6	Numerical problems based on							
	a) Thermodynamic work done concepts							
	b) Thermodynamic work done and cycle concept							
	c) Tutorial							
Week 3	Introduction and Basic Concepts of Thermodynamics and Thermal							
	Engineering (Contd.)							
Class 7	Numerical problems based on							
	a) Thermodynamic work done concepts							
	b) Thermodynamic work done and cycle concept							
	c) Tutorial							
Class 8	Numerical problems based on							
	a) Thermodynamic work done concepts							
	b) Thermodynamic work done and cycle concept							

	c) Tutorial	
	First Law and its application (Non Flow Process)	
Class 9	a) Concept of heat and specific heat	
	b) First law of thermodynamics, first law for a cycle and sign	
	convention	
	c) Heat is a path function and energy or internal energy is a property.	
Week 4	First Law and its application (Non Flow Process) (Contd.)	
Class 10	a) Energy of an isolated system, PMM-I	CT 2,
	b) Concept of internal energy and enthalpy.	Final Exam
	c) Heat transfer for various process for closed system.	
Class 11	a) Meyer's Equation,	
	b) Important thermodynamic relations and air standard values	
	c) Specific heat for polytrophic process	
Class 12	a) Adiabatic process	
	b) Numerical based of 1 st law of thermodynamics	
Week 5	Second Law of Thermodynamics and Entropy	_
Class 13	a) Kelvin-Planck and Clausius statement	_
	b) Equivalence of Kelvin-Planck and Clausius statement.	
	c) Carnot Cycle	
Class 14	a) Carnot theorem	_
	b) Corollary of Carnot theorem and efficiency and COP of reversible	
	cycle,	
	c) Clausius inequality	
Class 15	Numerical based on 2 nd law of thermodynamics	_
Week 6	Gas Power Cycles and Application	
Class 16	a) Basic consideration in the analysis of power cycle	
	b) Air standard assumptions	
	c) An overview of reciprocating engine	
Class 17	Application – I:	
	Otto Cycles: The ideal cycle for spark ignition engine	Mid Term,
Class 18	Application – II:	Final Exam,
	Diesel Cycles: The ideal cycle for compression ignition engine	Presentatio
Week 7	Gas Power Cycles and Application (Contd.)	n
Class 19	Application – III:	
	Brayton Cycles: The ideal cycle for gas turbine engine	
Class 20	Numerical on Gas Cycle	
Class 21	Numerical on Gas Cycle	
Week 8	Non-Conventional Power Generation	
Class 22	Non-Conventional Power Generation	_
Class 23	Review Class	
Class 24	Review Class	
Week 9	Properties of pure substance and Mixture of Gas and Vapor	
Class 25	Formation and Properties of Steam and Entropy of Steam, Properties of T-H	
Class 25	diagram, T-V diagram, P-V diagram, T-S and H-S diagram for water and	
C1435 25	diagram, 1-v diagram, F-v diagram, 1-S and H-S diagram for water and	
Cluss 25	steam	
Class 26		-

Class 27	Numerical Problems on steam properties	
Week 10	Internal Combustion Engine Basics	
Class 28	Concept on Heat Engine and classifications, IC engine basic components	
Class 29	IC engine basic components	
Class 30	Working principle of a two stroke/ four stroke Engine	
Week 11	Refrigeration, Air Conditioning System and Phychrometry	
Class 31	Basic concepts on refrigeration and air conditioning, type of refrigeration	
	Process	
Class 32	Schematic and T-S diagram refrigeration cycle, COP	
Class 33	Numerical problems on refrigeration system	
Week 12	Refrigeration, Air Conditioning System and Phychrometry (Contd.) and	
	Steam Turbine	CT 3,
Class 34	Air Conditioning types, study of psychrometric chart	Final Exam
Class 35	Steam turbine cycle, Schematic and T-S diagram	
Class 36	Turbine Staging; Pressure and velocity profile of turbine, Combined Cycle	
	Power Plant (CCPP)	
Week13	Steam Turbine and Steam Boiler (Contd.)	
Class 37	Numerical on steam turbine	
Class 38	Classification of boilers by mentioning the bases, Different types of boiler	
	with their schematic and salient features,	
Class 39	Four accessories of Boiler: function and uses, Use of air-preheater, super-	
	heater, fusible plug and safety valve for a boiler.	
Week 14		
Class 40	Review Class	
Class 41	Review Class	
Class 42	Review Class	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Con	mponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO5	C1,C2,C3
Continuous	Assignment 1-3	2070	CO2	C2,C3
Assessment (40%)	Class Participation	5%	CO1-CO6	C1, C2, C3, A2
	Mid term	15%	CO3, CO6	C1, C3
			CO2	C2,C3
			CO3	C3
Fii	Final Exam		CO4	C2
			CO5	C1,A2
			CO6	C1
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Thermodynamics: An Engineering Approach-Yunus A. Cengel, Michael A. Boles
- 2. Fundamentals of Engineering Thermodynamics- Michael J. Moran & Howard N. Shapiro.
- 3. Fundamentals of Thermodynamics R E Sonntag, C. Borgnakke, G J. Van Wylen.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 178 Contact Hours: 3.00
Course Title: Thermal Engineering Lab Credit Hours: 1.50

Level and Term: Level 1 Term 2

RE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The course aims to equip students with basic tools and methodologies for carrying out thermodynamic analyses of engineering systems. With the completion of each experiments, student will gradually develop the ability to compare and apply the theories of thermodynamic principles in the real life applications of thermal engineering notably in properties of fuels, heat engine, refrigeration and conditioning system, steam generation etc.

OBJECTIVES

- 1. To expose the students to the basic knowledge of thermal equipment and help them to develop experimental skills.
- 2. To familiarize equipment used for measuring viscosity, flash and fire point and Calorific value of fuels/lubricates used in IC Engines.
- 3. To familiarize with various types IC engines and their components.
- 4. To introduce with the models of refrigeration, air conditioning, steam turbine and gas turbine to know about their operating principles.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Conduct** experiments for the determination of viscosity, calorific value, flash point etc. of fuel/Lubricates oil.
- 2. **Identify** various components of IC engine.
- 3. **Perform** energy analysis of refrigeration and air conditioning system.
- 4. **Describe** the operation and **compute** performance of a steam turbine and gas turbine.
- 5. Use modern experimental tools to conduct the experiments related to thermodynamic system.

COURSE CONTENTS

- 1. Viscosity Test of a Lubricant Oil
- 2. Determination of Flash Point of Liquid Fuel
- 3. Calorific value of Gaseous Fuel by Gas Calorimeter
- 4. Proximate Analysis of Coal
- 5. Determination of Carbon Residue of a Given Fuel
- 6. Study of Various Components of an I.C Engine
- 7. Study of a Refrigeration and Air Conditioning Unit
- 8. Study of Sling Psychrometer

- 9. Study of a Gas Turbine.
- 10. Study the working and function of mountings and accessories in boilers.
- 11. Study of a steam turbine.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	Course Outcomes (COs)		PROGRAM OUTCOMES (PO)										
110.	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Conduct experiments for the determination of viscosity, calorific value, flash point etc. of fuel/Lubricates oil.	√											
CO2	Identify various components of IC engine.	√											
СОЗ	Perform energy analysis of refrigeration and air conditioning system.		√										
CO4	Describe the operation and compute performance of a steam turbine and gas turbine.	~											
CO5	Use modern experimental tools to conduct the experiments related to thermodynamic system.					V							

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Conduct experiments for the determination of viscosity, calorific value, flash point etc. of fuel/Lubricates oil.	C3		1	1-4	R,Q,T
CO2	Identify various components of IC engine.	C1			1,2	R,Q,T
CO3	Perform energy analysis of refrigeration and air conditioning system.	A2		1	1-4	R,Q,T
CO4	Describe the operation and compute performance of a steam turbine and gas turbine.	C1,C3			1-4	R,Q,T
CO5	Use modern experimental tools to conduct the experiments related to thermodynamic system.	C3			6	PR, Pr, T

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	Fundamental knowledge of mathematics and physics is required conduct experiments for the determination of viscosity, calorific value, flash point etc. of fuel/Lubricates oil
CO2-PO1	After familiarization with various components of IC engine, the students should be able to identify these components and describe their functions.
CO3-PO2	The students should be able to analyze the energy and performance of refrigeration and air conditioning process.
CO4-PO1	Fundamental knowledge on steam turbine and steam boiler will help the students to understand the basic operating principle of them.
CO5-PO5	The students will acquire knowledge in modern tools that has been used to carry out various experiments of thermodynamic system.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Week	Topics
Week 1	Course introduction
Week 2	a) Viscosity Test of Liquid Substance
	b) Study of Different Speed Measuring Devices
Week 3	Determination of Flash Point of Liquid Fuel
Week 4	Calorific value of Gaseous Fuel by Gas Calorimeter
Week 5	Proximate Analysis of Coal
Week 6	a) Determination of Carbon Residue of a Given Fuel
	b) Concept of pressure and pressure sensor Behavior

Week 7	Lab Test-1
Week 8	a) Study of Various Components of an I.C Engine
	b) I.C engine valve timing diagram
Week 9	a) Study of a Refrigeration and Air Conditioning Unit.
	b) Study of Sling Psychrometer
Week 10	Study of a Gas Turbine.
Week 11	a) Study the working and function of mountings and accessories in boilers
	b) Study of a steam turbine
Week 12	Lab Test-2
Week 13	Viva
Week 14	Final Quiz

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Со	mponents	Grading	COs	Bloom's Taxonomy										
			CO1	C3										
	Lab participation	200/	CO2	C1										
	and Report	20%	CO3	A2										
			CO4	C1,C3										
Continuous	Labtest-1,Labtest-2		CO1	C3										
Assessment		30%	CO2	C1										
(40%)			CO3	A2										
		2	<i>L</i>	2	2	2	2	2					CO4	C1,C3
			CO5	C3										
	Project and Presentation	25%	CO5	СЗ										
			CO1	C3										
1	ab Quiz	25%	CO2	C1										
	Lau Quiz	2370	CO3	A2										
			CO4	C1,C3										
To	otal Marks	100%												

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Thermodynamics: An Engineering Approach-Yunus A. Cengel, Michael A. Boles
- 2. Fundamentals of Engineering Thermodynamics- Michael J. Moran & Engineering Thermodynamics Michael J. Moran & Michael Mich
- 3. Fundamentals of Thermodynamics R E Sonntag, C. Borgnakke, G J. Van Wylen.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 201 Credit Hours: 3.00
Course Title: Mechanics of Structure Contact Hours: 3.00

Level and Term: Level 2 Term I

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is intended to provide students with a thorough understanding of the theory and application of structural analysis as it applies to columns, beams and frames. Emphasis is placed on developing the student's ability to calculate the deflection of beam, shear force and bending moment.

OBJECTIVES

- 1. To evaluate stress and deformation of simple deformable structural under shear, flexure and torsional loadings.
- 2. To analyze statically indeterminate structure.
- 3. To analyze deflection of beam and shaft.
- 4. To establish the stress transformation equations and determine the absolute maximum normal and shear stress.
- 5. To analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the concepts and principles of structural stability and mechanical components.
- 2. **Perform** calculation and drawing of shear force and bending moment at different loading conditions.
- 3. **Analyze** various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.
- 4. **Evaluate** the deflection of a beam and buckling of a column subjected to loads.

COURSE CONTENTS

- 1. **Introduction to Mechanics of Structure:** Basic Concept of Mechanics, Importance of Mechanics of Structure in Ship Design, History of Structural Failure of Ships. Centroids of Plane Areas, Centroids of Composite Areas, Moments of Inertia of Plane Areas, Parallel-Axis Theorem for Moments of Inertia, Polar Moments of Inertia, Products of Inertia, Rotation of Axes, Principal Axes and Principal Moments of Inertia.
- 2. **Tension, Compression, and Shear**: Normal Stress and Strain, Mechanical Properties of Materials, Elasticity, Plasticity, and Creep, Linear Elasticity, Hooke's Law, and Poisson's Ratio, Shear Stress and Strain, Allowable Stresses and Allowable Loads, Design for Axial Loads and

- Direct Shear, Problems.
- 3. **Axially Loaded Members:** Changes in Lengths of Axially Loaded Members, Changes in Lengths Under Non uniform Conditions, Statically Indeterminate Structures, Thermal Effects, Misfits, and Prestrains, Stresses on Inclined Sections, Strain Energy, Impact Loading, Repeated Loading and Fatigue, Stress Concentrations, Nonlinear Behavior, Elastoplastic Analysis, Problems.
- 4. **Torsion:** Torsional Deformations of a Circular Bar, Circular Bars of Linearly Elastic Materials, Non-uniform Torsion, Stresses and Strains in Pure Shear, Relationship Between Moduli of Elasticity E and G, Transmission of Power by Circular Shafts, Statically Indeterminate Torsional Members, Strain Energy in Torsion and Pure Shear, Thin-Walled Tubes, Stress Concentrations in Torsion, Problems.
- 5. **Shear Forces and Bending Moments:** Types of Beams, Loads, and Reactions, Shear Forces and Bending Moments, Relationships Between Loads, Shear Forces, and Bending Moments, Shear-Force and Bending-Moment Diagrams, Problems.
- 6. Stresses in Beams: Pure Bending and Non-Uniform Bending, Curvature of a Beam, Longitudinal Strains in Beams, Normal Stresses in Beams, Design of Beams for Bending Stresses, Non-prismatic Beams, Shear Stresses in Beams of Rectangular Cross Section, Shear Stresses in Beams of Circular Cross Section, Shear Stresses in the Webs of Beams with Flanges, Built-Up Beams and Shear Flow, Beams with Axial Loads, Stress Concentrations in Bending, Problems.
- 7. **Analysis of Stress and Strain:** Plane Stress, Principal Stresses and Maximum Shear Stresses, Mohr's Circle for Plane Stress, Hooke's Law for Plane Stress, Triaxial Stress, Plane Strain, Problems.
- 8. **Applications of Plane Stress:** Spherical Pressure Vessels, Cylindrical Pressure Vessels, Maximum Stresses in Beams, Combined Loadings, Problems.
- 9. **Deflections of Beams:** Differential Equations of the Deflection Curve, Deflections by Integration of the Bending-Moment Equation, Deflections by Integration of the Shear-Force and Load Equations, Method of Superposition, Moment-Area Method, Non-prismatic Beams, Strain Energy of Bending, Castigliano's Theorem, Deflections Produced by Impact, Discontinuity Functions, Use of Discontinuity Functions in Determining Beam Deflections, Temperature Effects, Problems.
- 10. **Statically Indeterminate Beams:** Types of Statically Indeterminate Beams, Analysis by the Differential Equations of the Deflection Curve, Method of Superposition, Temperature Effects, Longitudinal Displacements at the Ends of a Beam, Problems.
- 11. **Columns:** Buckling and Stability, Columns with Pinned Ends, Columns with Other Support Conditions, Columns with Eccentric Axial Load, The Secant Formula for Columns, Elastic and Inelastic Column Behavior, Inelastic Buckling, Design Formulas for Columns, Problems.
- 12. **Various Theories of Failure:** Maximum Principal Stress theory also known as Rankine's Theory, Maximum Shear Stress theory or Guest And Tresca's Theory, Maximum Principal Strain theory also known as St. Venant's Theory, Total Strain Energy Theory or Haigh's Theory, Maximum Distortion Energy theory or Vonmises and Hencky's Theory.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (COs)]	PR()Gl	RAI	M O	UT	CO	MF	ES (P	O)		ĺ
110.	COURSE OUTCOME (COS)	1	2	3	4	5	6	7	8	9	10	11	12	ĺ

CO1	Explain the concepts and principles of structural stability and mechanical components.	V								
	Perform calculation and drawing of shear									
CO2	force and bending moment diagrams at									
	different loading conditions.									
	Analyze various situations involving									
CO3	structural members subjected to combined			2/	1					
003	stresses by application of Mohr's circle of			V						
	stress.									
CO4	Evaluate the deflection of a beam and		V							
004	buckling of a column subjected to loads.		٧							

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the concepts and principles of structural stability and mechanical components.	C2	1		1-4	CT, F
CO2	Perform calculation and drawing of shear force and bending moment diagrams at different loading conditions.	A2	1		1-4	CT, MT, F
CO3	Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.	C4	3		5	CT/ASG, F
CO4	Evaluate the deflection of a beam and buckling of a column subjected to loads.	C5	1		1-4	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to calculate stress-strain
	of mechanical components.
CO2-PO1	In order to apply the mathematics knowledge on load, shear force and bending
	moment equations to draw the shear force and bending moment diagrams.
CO3-PO3	To design structural members subjected to combined stresses to solve by using
	Mohr's circle of stress.
CO4-PO2	In order to analyze the deflection and buckling equations to solve the beam and
	column related problems at different loading conditions.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method **TEACHING LEARING STRATEGY**

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week 1	Introduction to Mechanics of Structure	
Class 1	Basic Concept of Mechanics, Importance of Mechanics of Structure in	
	Ship Design, History of Structural Failure of Ships.	
Class 2	Centroids of Plane Areas, Moments of Inertia of Plane Areas, Parallel-	
	Axis Theorem for Moments of Inertia.	
Class 3	Polar Moments of Inertia, Rotation of Axes, Principal Axes and	
	Principal Moments of Inertia.	
Week 2	Tension, Compression, and Shear	
Class 4	Normal Stress and Strain, Mechanical Properties of Materials,	
	Elasticity, Plasticity, and Creep, Linear Elasticity.	CT-1
Class 5	Hooke's Law, and Poisson's Ratio, Shear Stress and Strain, Allowable	Final
	Stresses and Allowable Loads, Design for Axial Loads and Direct	Exam
	Shear.	
Class 6	Changes in Lengths of Axially Loaded Members, Changes in Lengths	
	Under Non uniform Conditions.	
Week 3	Axially Loaded Members	
Class 7	Statically Indeterminate Structures, Thermal Effects, Misfits, and	
	Prestrains.	
Class 8	Stresses on Inclined Sections, Strain Energy, Impact Loading, Repeated	
	Loading and Fatigue, Stress Concentrations, Nonlinear Behavior	
Class 9	Types of bars of varying sections, Stresses in the bars of different	
	sections.	
Week 4	Torsion	CT-2
Class 10	Torsional Deformations of a Circular Bar, Circular Bars of Linearly	Final
	Elastic Materials, Non-uniform Torsion.	Exam
Class 11	Assessment 01	Exam
Class 12	Stresses and Strains in Pure Shear, Relationship Between Moduli of	

	Elasticity <i>E</i> and <i>G</i> , Transmission of Power by Circular Shafts.				
Week 5	Shear Forces and Bending Moments				
Class 13	Statically Indeterminate Torsional Members, Strain Energy in Torsion				
	and Pure Shear, Thin-Walled Tubes, Stress Concentrations in Torsion.				
Class 14	Types of Beams, Loads, and Reactions, Shear Forces and Bending				
	Moments.				
Class 15	Relationships Between Loads, Shear Forces, and Bending Moments,				
	Shear-Force and Bending-Moment Diagrams				
Week 6	Stresses in Beams				
Class 16	Shear-Force and Bending-Moment Diagrams. (Continue)				
Class 17	Pure Bending and Non-uniform Bending, Curvature of a Beam,				
	Longitudinal Strains in Beams.				
Class 18	Normal Stresses in Beams, Design of Beams for Bending Stresses,				
	Non-prismatic Beams, Shear Stresses in Beams of Rectangular Cross				
	Section.				
Week 7	Stresses in Beams				
Class 19	Shear Stresses in Beams of Circular Cross Section, Shear Stresses in				
GI 20	the Webs of Beams with Flanges.				
Class 20	Built-Up Beams and Shear Flow, Beams with Axial Loads, Stress				
C1 01	Concentrations in Bending.				
Class 21	Assessment 02				
Week 8	Mohr's Circle				
Class 22 Class 23	Plane Stress, Principal Stresses and Maximum Shear Stresses Mohr's Circle for Plane Stress				
Class 23		MC 1			
Week 9	Application and Problems Deflections of Beams	Mid			
Class 25	Differential Equations of the Deflection Curve, Deflections by	Term, Final			
Class 25	Integration of the Bending-Moment Equation.	Exam			
Class 26	Deflections by Integration of the Shear-Force and Load Equations,	Laum			
C1035 20	Method of Superposition.				
Class 27	Moment-Area Method, Non-prismatic Beams, Strain Energy of				
C1465 27	Bending, Castigliano's Theorem.				
Week 10	Statically Indeterminate Beams				
Class 28	Types of Statically Indeterminate Beams, Analysis by the Differential				
	Equations of the Deflection Curve				
Class 29	Method of Superposition, Temperature Effects, Longitudinal				
	Displacements at the Ends of a Beam.				
Class 30	Application and Problems.				
Week 11	Columns				
Class 31	Mid-Term Exam				
Class 32	Buckling and Stability, Columns with Pinned Ends.	CT 3,			
Class 33	Columns with Other Support Conditions, Columns with Eccentric Axial				
	Load.	Exam			
Week 12	Columns				
Class 34	The Secant Formula for Columns, Elastic and Inelastic Column				
	Behavior.				

Class 35	Inelastic Buckling, Design Formulas for Columns.			
Class 36	Application and Problems.			
Week13	Various Theories of Failure			
Class 37	Maximum Principal Stress theory also known as Rankine's Theory,			
	Maximum Shear Stress theory or Guest And Tresca's Theory			
Class 38	Maximum Principal Strain theory also known as St. Venant's Theory,			
	Total Strain Energy Theory or Haigh's Theory			
Class 39	Assessment 03			
Week 14	Course review			
Class 40	Course review			
Class 41	Course review			
Class 42	Course review			

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment (40%)	Class Participation	5%	CO2	
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2, , C4
Final Exam		60%	CO2	C1, C2,C4
1 1116	ai Exaiii	0070	CO3	C5, C4
			CO4	C5, C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Mechanics of Structure, James M Gere
- 2. Mechanical Behavior of Materials, Meyers and Chawla
- 3. Strength of Material, Gupta and Khurmi
- 4. Mechanics of Material, Russell C Hibbeler

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 202 Contact Hours: 1.5
Course Title: Mechanics of Structure Lab Credit Hours: 0.75

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Mechanics of Structure Sessional course is designed to teach students about the basic concepts of strength of materials such as analysis of material properties based on tension, compression, hardness, bending, buckling, impact etc. Students will be able to perform necessary calculations related to the tensile stress, compressive stress, and shear stress. It is expected that students will develop critical thinking about to measure characteristics of strength of material precisely, able to check their effects using calculations and finally chose the appropriate feature of structure.

OBJECTIVES

- 1. To impart knowledge about the fundamental concepts as stresses and strains, deformations and displacements, elasticity and inelasticity, strain energy, and load-carrying capacity
- 2. To enable students to learn and appreciate how structural analysis and materials response are intricately involved in the engineering product/device design process.
- 3. To familiarize the students with the effect of different types of stress on materials.
- 4. To enable students to know about the fundamental concepts of materials failures.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Measure** tensile and compressive strength of a specimen for applying in a practical design-based project work.
- 2. **Evaluate** hardness, impact strength, fatigue strength to analyze the application of a specific material for a given design requirement for different loading conditions of structures.
- 3. **Identify** bending in beams and calculate the bending stresses which further builds the foundation of using modern analysis software.
- 4. **Assist** in evaluating the capacity of a column to withstand compressive stresses for a safe and sustainable design of ship's hull.

COURSE CONTENTS

- 1. Study and Calibration of a Universal Testing Machine (UTM);
- 2. Tensile Test of Mild Steel Specimen;
- 3. Hardness Test of Metal Specimen;
- 4. Impact Test of Metal Specimen;
- 5. Column Test of Mild Steel Specimen;
- 6. Bending of a beam under point load.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
140.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
	Measure tensile and compressive strength												
CO1 of a specimen for applying in a practical													
	design-based project work.												
	Evaluate hardness, impact strength to												
	analyze the application of a specific			ı									
CO2	material for a given design requirements	$$											
	for different loading conditions of												
	structures.												
	Identify bending in beams and calculate												
CO3	the bending stresses which further builds	1	$\sqrt{}$										
003	the foundation of using modern analysis												
	software.												
	Assist in evaluating the capacity of a												
CO4	column to withstand compressive stresses												
004	for a safe and sustainable design of ship's									V			
	hull.												

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Measure tensile and compressive strength of a specimen for applying in a practical design-based project work.	P4				R,Q,T
CO2	Evaluate hardness, impact strength to analyze the application of a specific material for a given design requirements for different loading conditions of structures.	C5				R,Q,T
CO3	Identify bending in beams and calculate the bending stresses which further builds the foundation of using modern analysis software.	A4	1		1-4	R,Q,T
CO4	Assist in evaluating the capacity of a column to withstand compressive stresses for a safe and sustainable design of ship's hull.	Azələrə G	1		1-4	R,Q,T

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
---------	----------------

CO1-PO3	The students will acquire knowledge on modern tools that can be used to find out different structural problems.
CO2-PO2	Students will identify different structural problems and will try to reach the solutions by applying acquired knowledge.
CO3-PO2	Fundamental knowledge structure failure will help the students to understand the concept of safety factor.
CO4-PO9	Students will work as a team as well as individually to reach the solution of structural based problems.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	5
Experiment	15
Self-Directed Learning	
Preparation of Lab Reports	10
Preparation of Lab-test	4
Preparation of Quiz	4
Preparation of Presentation	6
Engagement in Group Projects	14
Formal Assessment	02
Total	60

TEACHING METHODOLOGY

Lecture followed by hands on experiment session and discussion, co-operative and collaborative method, project-based method.

COURSE SCHEDULE

Week	Topic
Week 1	Course introduction, Study and Calibration of a Universal Testing Machine (UTM)
Week 2	Tensile Test of Mild Steel Specimen
Week 3	Hardness Test of Metal Specimen
Week 4	Impact Test of Metal Specimen
Week 5	Column Test of Mild Steel Specimen
Week 6	Bending of a beam under point load
Week 7	Final Viva and Quiz

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	mponents	Grading	COs	Bloom's Taxonomy
	Lab participation		CO 1	C1, C3
	and Report	20%	CO 2	C4, A1
	and Report		CO 3	C3, C4

Continuous			CO 4	A2
Assessment			CO 1	C1, C3
	Labtest-1,Labtest-2	30%	CO 2	C4, P1
	Lablest-1,Lablest-2	30%	CO 3	C3, C4
			CO 4	A2
	Project and Presentation	25%	CO 1, CO 2, CO 3	A1, A2, A3
'			CO 1	CO 2
	ob Oniz	25%	CO 2	CO 3
Lab Quiz		23%	CO 3	C3, P7
			CO 4	C3
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Fundamentals of Machine Design Andrzej Golenko_
- 2. Theory of Machine and Mechanisms Joseph E. Shigley, John Joseph Uicker
- 3. Standard Handbook of Machine Design Joseph E. Shigley, Charles R. Mischke, Thomas H.Brown
- 4. Design of Machine Elements Sharma, C.S.
- 5. Theory and Problems of Machine Design –Hall, Holowenco and Laughlin
- 6. Theory of Machine R.S. Khurmi and J. K. Gupta.

COURSE INFORMATION

Course Code: NAME 205 Credit Hours: 3.00
Course Title: Shipbuilding Materials and Metallurgy Contact Hours: 3.00

Level and Term: Level 2 Term I

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The knowledge of Shipbuilding Materials and Metallurgy course is intended to provide an integrated approach, utilizing the materials science, and structural integrity principles as they apply to offshore structures and ships. Students will be able to select appropriate materials for ships and marine structure and components. It is expected that students will develop critical thinking to select optimum material for marine structure on the basis of engineering and environment point of view.

OBJECTIVES

- 1. To enable explain methods of production of cast iron, steel and nonferrous metals.
- 2. To enable explain the concepts on material property improvement and heat treatment technology.
- 3. To familiarize with different marine engineering materials and essential criteria on different applications.
- 4. To introduce the appropriate material depending on application and environment of marine structure and ship.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Select** materials for a particular application and different environment.
- 2. **Interpret** the design criteria of materials.
- 3. **Apply** appropriate technology on different materials, their processing and heat treatments in suitable application in marine engineering fields.
- 4. **Compare** the materials and their properties used in the marine industry

COURSE CONTENTS

- 1. **Metals as materials of construction:** What is material Science and Engineering, Classification of materials; Materials Design and Selection. Industrially significant properties of metallic materials: Technological Significance; Terminology for Mechanical Properties; Tensile test: Use of the stress-strain diagram, True Stress and True Strain; The Bend test for Brittle materials; Hardness of Materials; Strain Rate Effects and Impact Behavior; Fracture Mechanics; Micro-structural features of fracture in metallic materials, ceramics, glasses and composites; Fatigue; Results and applications of fatigue test; Creep, Stress Rupture and Stress Corrosion.
- 2. Production, properties and uses of Pig Iron, Cast Iron and Carbon Steels: Blast

Furnace production of Pig Iron; Bessemer process for the production of steel; The Open Hearth Process. Phase diagrams, The Fe-Fe3C equilibrium diagram: Equilibrium diagrams, Phase diagrams for two metals completely soluble in liquid and solid states, Two metals completely soluble in the liquid state and completely insoluble in the solid state; Two metals completely soluble in the liquid state but only partly soluble in the solid state; The Eutectoid Reaction; The Iron-Iron Carbide Diagram

- 3. **Heat treatment of Steel:** Full Annealing; Spheroidizing; Stress-relief Annealing; Process Annealing; Normalizing; Hardening, Austentizing Temperature, Mechanism of heat removal during Quenching, Quenching medium; Tempering
- 4. Cast Iron, Alloy, tool, stainless, heat-resisting and creep resisting steels etc.: White Cast Iron, Malleable Cast Iron, Pearlitic Malleable Iron, Gray Cast Iron, Mechanical properties and applications of Gray Cast Iron, Silicon in Cast Iron, Alloy Cast Iron; Stainless steel types.
- 5. **Case hardening of steels:** Carburizing; Nitriding; Cyaniding; Flame hardening; Induction hardening.
- 6. **Nonferrous alloys:** Copper alloys, Brass alloys, Bronze alloys, Gun metal, Bearing Materials, Aluminium alloys, Magnesium alloys, Tin alloys.
- 7. Protective Coatings. Cement, Timber, Rubber, Glass and Plastic
- 8. General steel grades and description of IACS requirement for shipbuilding materials.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES:

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Select materials for a particular application and							٦/					
COI	different environment.							٧					
CO2	Interpret the design criteria of materials.												
	Apply appropriate technology on different												
CO3	materials, their processing and heat treatments in												
	suitable application in marine engineering fields.												
CO4	Compare the materials and their properties used				٦/								
	in the marine industry.				٧								

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Select materials for a particular application and different environment.	C1	3		7	CT, F, ASG
CO2	Interpret the design criteria of materials.	C2	4		1-4	CT, MT, F
CO3	Apply appropriate technology on different materials, their processing and heat treatments in suitable application in marine engineering fields.	СЗ	1		6	CT, F
CO4	Compare the materials and their properties used in the marine industry.	C4	2		8	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO7	Evaluate the sustainability and impact of professional engineering work in the
	solution of complex engineering problems in environmental contexts to select
	materials for a particular application and different environment.
CO2-PO1	Apply knowledge of science and engineering fundamentals and an engineering
	specialization to interpret the design criteria of materials.
CO3-PO5	To select appropriate techniques with an understanding of the limitations to apply in
	different materials, their processing and heat treatments in suitable application in
	marine engineering fields.
CO4-PO4	Analysis and interpretation of data and synthesis of information to compare the
	materials and their properties used in the marine industry.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	What is material Science and Engineering, Classification of materials	
Class 2	Materials Design and Selection.	
Class 3	Industrially significant properties of metallic materials:	
Week 2	Metals as materials of construction	
Class 4	Technological Significance;	
Class 5	Terminology for Mechanical Properties; Tensile test: Use of the stress-	CT 1,
	strain diagram, True Stress and True Strain;	Final Exam
Class 6	The Bend test for Brittle materials; Hardness of Materials; Strain Rate	

	Effects and Impact Behavior;	
Week 3	Metals as materials of construction	
Class 7	Fracture Mechanics; Micro-structural features of fracture in metallic materials	
Class 8	ceramics, glasses and composites	
Class 9	Fatigue; Results and applications of fatigue test;	
Week 4	Production, properties and uses of Pig Iron, Cast Iron and Carbon	
C1 10	Steels Compared to the Compar	
Class 10	Creep, Stress Rupture and Stress Corrosion.	
Class 11	Blast Furnace production of Pig Iron	CT 2,
Class 12	Bessemer process for the production of steel;	Final Exam
Week 5	Production, properties and uses of Pig Iron, Cast Iron and Carbon Steels	Tillal Exalli
Class 13	The Open-Hearth Process	
Class 14	Phase diagrams	
Class 15	Equilibrium diagrams, Phase diagrams for two metals completely soluble	
	in liquid and solid states,	
Week 6	Production, properties and uses of Pig Iron, Cast Iron and Carbon	
	Steels	
Class 16	Two metals completely soluble in the liquid state and completely	
	insoluble in the solid state;	
Class 17	Two metals completely soluble in the liquid state but only partly soluble	
	in the solid state;	
Class 18	The Eutectoid Reaction;	
Week 7	Production, properties and uses of Pig Iron, Cast Iron and Carbon Steels	
Class 19	The Iron-Iron Carbide Diagram	
Class 20	Full Annealing; Spheroidizing; Stress-relief Annealing; Process Annealing;	Mid Term, Final Exam
Class 21	Normalizing;	
Week 8	Heat treatment of Steel	
Class 22	Hardening,	
Class 23	Austentizing Temperature,	
Class 24	Mechanism of heat removal during Quenching, Quenching medium;	
	Tempering	
Week 9	Cast Iron, Alloy, tool, stainless, heat-resisting and creep resisting steels etc	
Class 25	White Cast Iron, Malleable Cast Iron	
Class 26	Malleable Cast Iron, Pearlitic Malleable Iron, Gray Cast Iron	
Class 27	Silicon in Cast Iron, Alloy Cast Iron; Stainless steel types.	
Week 10	Case hardening of steels	
Class 28	Carburizing; Nitriding;	
Class 29	Cyaniding	
Class 30	Flame hardening; Induction hardening.	
Week 11	Nonferrous alloys	Mid Tarres
Class 31	Copper alloys	Mid Term,

Class 32	Brass alloys, Bronze alloys,	Final Exam
Class 33	Gun metal, Bearing Materials	
Week 12	Structural Assemble	
Class 34	Aluminium alloys	
Class 35	Magnesium alloys	
Class 36	Tin alloys.	
Week13	Structural Assemble	
Class 37	Protective Coatings, Cement	
Class 38	Glass, Plastic, Rubber	
Class 39	Timber	CT 3,
Week 14	Shipbuilding Materials	Final Exam
Class 40	General steel grades and description of IACS requirement for	
	shipbuilding materials.	
Class 41	Course Revision	
Class 42	Course Revision	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2
Continuous	Assignment 1-3	2070	CO4	C3, C5
Assessment	Class	5%	CO1, CO2, CO3,	C1
(40%)	Participation	3 70	CO4	CI
	Mid term	15%	CO2, CO4	C1, C2, C5
			CO1	C1, C2
Eine	Final Exam		CO2	C1, C2,C5
1.1116	ai Exaili	60%	CO3	C2
			CO4	C3
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Introduction of Physical Metallurgy, S.H. Avner, 2nd edition, McGraw-Hill International Editions, Materials Science and Metallurgy Series, 2000.
- 2. Essentials of Materials Science and Engineering, D.R. Askeland and P.P. Fulay, 2nd edition, Cengage Learning Publishers, Nelson Education Ltd., 2010.
- 3. Chemistry of Engineering Materials, R.B. Leighou, 1942.
- 4. Engineering Materials 2: An Introduction to Microstructures, Processing and Design, M.F. Ashby and D.R.H. Jones, 2nd edition, Butterworth-Heinemann publishers ltd., 1998.

COURSE INFORMATION

Course Code: NAME 206 Credit Hours: 0.75
Course Title: Shipbuilding Materials and Metallurgy Lab Contact Hours: 1.50

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Performance or application of material depends on synthesis, composition and properties of material. Like the other engineering field, structural performance of a ship is governed by proper selection of material. This is a compulsory sessional course based on experiment, inspection and composition analysis of materials for a better understanding of structure-material properties correlation. Shipbuilding Materials Sessional is designed to introduce the students with metallography and the influence of metallographic structure on material properties.

OBJECTIVES

- 1. To introduce students with metallography and the influence of metallographic structure on material properties.
- 2. To teach the students specimen sample preparation.
- 3. To help students understand phase diagrams in details.
- 4. To enable the students to study the microstructure of steel and cast iron.
- 5. To demonstrate the effect of heat treatment on microstructure and material properties.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Recognize** the structure-material properties correlation;
- 2. **Distinguish** the variation in material composition;
- 3. **Relate** the theoretical knowledge with the practical experiment results;
- 4. **Select** suitable materials in ship construction.

COURSE CONTENTS

- 1. Introduction to Metallographic and Metallographic Sample Specimen Preparation;
- 2. Study of Phase Diagrams, Microstudy of steels;
- 3. Heat treatment of steels;
- 4. Microstudy of cast irons,
- 5. Composition analysis of different materials by X-ray;
- 6. Surface crack detection by Magnetic particle test for NDT.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (COs)		PROGRAM OUTCOMES (PO)													
140.	COURSE OUTCOME (COS)	1	1 2 3		4	5	6	7	8	9	10	11	12			
CO1	Recognize the structure-material		V													
COI	properties correlation;				l v											
CO2	Distinguish the variation in material					V										
CO2	composition;								V							
CO3	Relate the theoretical knowledge with the	J														
003	practical experiment results;	\ \														
CO4	Select suitable materials in ship			1												
C04	construction.			\												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Recognize the structure-material properties correlation;	C1	-	1	1,3,4	R,Q,T
CO2	Distinguish the variation in material composition;	C2	1	1	6	R,Q,T
CO3	Relate the theoretical knowledge with the practical experiment results;	С3	1	1	1,3,4	R,Q,T
CO4	Select suitable materials in ship construction.	C4	1-5	2,3	5	R,Q,Pr

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPING

Mapping	Justifications
CO1-PO2	Students will be able to identify the exact material for efficient ship building by
CO1-FO2	recognizing the structure-material properties correlation.
	Selection and application of appropriate techniques, resources and modern
CO2-PO5	engineering tools will be required for distinguishing the variation in material
	composition.
CO3-PO1	Systematic understanding of engineering knowledge by conforming with
CO3-FO1	experimental results.
CO4-PO3	Knowledge of suitable material selection will support practical ship design in the
CO4-FO3	shipbuilding area.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	06

Preparation of Quiz	12
Preparation of Lab Reports Preparation of Viva	20
Self-Directed Learning	
Experiment	15

TEACHING METHODOLOGY

Lecture followed by hands on experiment and observation, discussion and report submission

COURSE SCHEDULE

Week	Name of the Topics
Week-1	Course introduction, Introduction to metallography and sample preparation.
Week-2	Study of Phase Diagrams
Week-3	Micro study of Steel
Week-4	Heat Treatment of Steel
Week-5	Heat Treatment of Steel(continued)
Week-6	Heat treatment of Cast Iron
Week-7	Final Quiz/ Viva

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Comp	onents	Grading	COs	Bloom's Taxonomy
	Lab participation	20%	CO 1, CO 2, CO 3	C1, C2,A1
Continuous			CO 1	C1, C4
Assessment	Lab Report	40%	CO 2	C4, P1
(40%)	^		CO 3	C3, C4
(4070)			CO 4	C3
	Presentation/	15%	CO 1, CO 2, CO 3,	A1, A2, A4
	Viva	13/0	CO 4	A1, A2, A4
			CO 1	CO 2
Lob	Quiz	25%	CO 2	CO 3
Lau	Quiz	2370	CO 3	C3, P7
			CO 4	C3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Introduction of Physical Metallurgy, S.H. Avner, 2nd edition, McGraw-Hill International Editions, Materials Science and Metallurgy Series, 2000.
- 2. Essentials of Materials Science and Engineering, D.R. Askeland and P.P. Fulay, 2nd edition, Cengage Learning Publishers, Nelson Education Ltd., 2010
- 3. Chemistry of Engineering Materials, R.B. Leighou, 1942.
- 4. Engineering Materials 2: An Introduction to Microstructures, Processing and Design, M.F. Ashby and D.R.H. Jones, 2nd edition, Butterworth-Heinemann publishers ltd., 1998.

COURSE INFORMATION

Course Code: NAME 207 Credit Hours: 3.00
Course Title: Ship Design Contact Hours: 3.00

Level and Term: Level 2 Term 1

PRE-REQUISITE

Course Code: NAME 107, NAME 157

Course Title: Introduction to Naval Architecture and Marine Engineering, Hydrostatics and Stability

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The course aims to provide the understanding of the many facets of ship design – function and appearance and design philosophy. A ship structure must be stable, seaworthy and have adequate strength in all weathers. This course will help to develop and apply key theories and principles associated with the design of vessels and also develops fundamental naval architecture knowledge, including a thorough exploration of its concepts and how they are practically used in applications in ships.

OBJECTIVES

- 1. To enable in interpreting and applying the design principles of naval architecture
- 2. To enable in imparting knowledge on applying appropriate calculations and interpret outcomes in naval architecture tasks.
- 3. To introduce to the role that the naval architects play in meeting and industry and international regulatory requirements
- 4. To enable in preparing a complete design spiral of ship.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Estimate** the values of design parameters, capacities and performances
- 2. Apply knowledge in practical ship designs and construction
- 3. Analyze design philosophy and design aspects of different type of ships
- 4. **Compare** characteristics of different design stages

COURSE CONTENTS

- 1. **Introduction to Ship Design:** Engineering design-philosophy: Various design stages: concept design, basic designs, preliminary designs, contract designs, detailed designs.
- 2. **Ship Design Spiral:** cargo routes, estimation of dimensions and hull form and displacement, preliminary G.A plan, calculation of freeboard, depth, volume, tonnage and capacities, calculation of longitudinal strength, resistance and powering, selection of machinery and outfit, checking for trim and stability, estimation of lightweight and cargo deadweight, economic criteria and evaluation.

3. **Extensive Use of Design Computer Environment:** Given owner's requirements, students individually create and report the conceptual/preliminary design for a displacement ship and Case studies of typical marine vehicles.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PROGR				RAM OUTCOMES (POs)								
110.	COURSE OUTCOMES (COS)	1	1 2		4	5	6	7	8	9	10	11	12		
CO1	Estimate the values of design parameters,			1											
COI	capacities and performances	and performances		'		'									
CO2	Apply knowledge in practical ship designs and	1													
CO2	construction	V													
CO3	Analyze design philosophy and design aspects				1										
CO3	of different type of ships				V										
CO4	Compare characteristics of different design									V					
204	stages									٧					

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	CP	CA	KP	Assessment
		Taxonomy				Methods
CO1	Estimate the values of design parameters, capacities and performances	C2	6		5	CT, F, ASG
CO2	Apply knowledge in practical ship designs and construction	C3	8		1-4	CT, MT, F
CO3	Analyze design philosophy and design aspects of different type of ships	C4	4		8	CT, F
CO4	Compare characteristics of different design stages	C5	7		-	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO3	Design solutions for complex engineering problems that meet specified needs with
	appropriate estimate the values of design parameters, capacities and performances.
CO2-PO1	Apply knowledge of science and engineering fundamentals to the solution of
	complex engineering problems based on apply the knowledge in practical ship
	designs and construction.
CO3-PO4	To conduct investigations of complex problems using research-based knowledge to
	analyze the design philosophy and design aspects of different type of ships.
CO4-PO9	Function effectively as an individual and as a member or leader in diverse teams to
	compare the characteristics of different design stages

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment				
Week 1	Introduction					
Class 1	Introduction, course administration					
Class 2	Engineering design philosophy	7				
Class 3	Design spiral	1				
Week 2	Design of Ship	7				
Class 4	Various design stages	7				
Class 5	Concept design; preliminary design	CT 1,				
Class 6	Contract design; detailed design	Final Exam				
Week 3	Design of Ship	7				
Class 7	Basic design					
Class 8	Class approval drawings					
Class 9	Review of design spiral					
Week 4	Design of Ship					
Class 10	Routes	7				
Class 11	Determination of principal dimensions	1				
Class 12	Preliminary weight calculation and displacement	1				
Week 5	Design of Ship	CT 2,				
Class 13	Capacity check of deadweight items	Final Exam				
Class 14	Preliminary G.A plan	1				
Class 15	Preliminary G.A plan					
Week 6	Design of Ship	7				
Class 16	Introduction of LLC 1966	7				
Class 17	Definitions: type A ship, type B ship, tabular freeboard, bow height etc	7				

Class 18	Freeboard calculation	
Week 7	Design of Ship	
Class 19	Tonnage convention 1969	
Class 20	Volume, tonnage and capacities	Mid Term,
Class 21	Net tonnage, gross tonnage	Final Exam
Week 8	Design of Ship	7
Class 22	Longitudinal strength; estimation of shear force and bending moment	7
Class 23	Calculation of longitudinal strength.	
Class 24	Section modulus and inertia requirement of midship section.	
Week 9	Design of Ship	
Class 25	Resistance calculation	
Class 26	Power calculation	
Class 27	Selection of machinery and outfit	
Week 10	Design of Ship	
Class 28	Trim calculation	
Class 29	Heel calculation	
Class 30	Checking for trim and stability	
Week 11	Design of Ship	
Class 31	Estimation of lightweight	Mid Term,
Class 32	Estimation of cargo deadweight	Final Exam
Class 33	Economic criteria and evaluation.	
Week 12	Design of Ship	
Class 34	Extensive use of design computer environment	
Class 35	Extensive use of design computer environment.	
Class 36	Extensive use of design computer environment.	
Week13	Design of Ship	
Class 37	Given owner's requirements, students individually create and report the	
	conceptual/preliminary design for a displacement ship.	
Class 38	Given owner's requirements, students individually create and report the	CT 3,
	conceptual/preliminary design for a displacement ship.	Final Exam
Class 39	Given owner's requirements, students individually create and report the	7
	conceptual/preliminary design for a displacement ship.	
Week 14	Design of Ship	
Class 40	Case studies of typical marine vehicles I	
Class 41	Case studies of typical marine vehicles II	
Class 42	Case studies of typical marine vehicles III	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
Class Test/		20%	CO1, CO2, CO3	C2, C3
Continuous	Assignment 1-3	2070	CO3	C3, C5
Assessment	Class	5%	CO1, CO2, CO3,	C4
(40%)	Participation	370	CO4	C4
	Mid term	15%	CO2, CO4	C2, C5
Final Exam		60%	CO1	C2

		CO2	C3, C2,C5
		CO3	C4
		CO4	C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Principles of Naval Architecture, Vol. 1, 2 &3,
- 2. Ship Design and Performance for Master and Mates, Dr C B Barrass
- 3. Practical Ship Design, D.G.M. Watson, 1998, Elsevier Science Ltd.
- 4. Ship Design Methodologies of Preliminary Design, Apostolos Papanikolaou, Springer
- 5. Ship design for efficiency and economy, H Schneekluth and V Bertram

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 208 Credit Hours: 2.0
Course Title: Computer Aided Ship Design Contact Hours: 4.0

Level and Term: Level 2 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Computer Aided Ship Design sessional course is designed to teach the students about the basic design drawings of different types of ships and draw them with the aid of CAD software. Students will also be able to perform necessary calculations related to the basic structural design and capacity calculations.

OBJECTIVES

- 1. To enable students to be familiarized with different types of ships and their basic drawings.
- 2. To familiarize the students to CAD software for designing of various types of drawings of ship.
- 3. To enable students to use Rule Books for structural design calculation.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Produce** general arrangement (GA), Lines Plan, Mid-ship section drawing, longitudinal construction & shell expansion drawings with the aid of CAD Software.
- 2. **Interpret** & **use** rule books for structural design calculations.
- 3. **Prepare** capacity plan of a ship.
- 4. Use modern CAD programs for ship design drawings

COURSE CONTENTS

- 1. **AutoCAD:** Introduction to CAD, drawing unit and scale, 2-D drawing tools, Modification tools, layers, hatching and dimensioning, working in 3-D space, 3-D coordinate systems, drawing sheet layout, viewpoints, 3-D drawing tools, 3-D wire frame modelling, Surface modelling, solid modelling and rendering.
- 1. General arrangement (GA) plan drawing in CAD software,
- 2. Lines plan drawing in CAD software,
- 3. Preliminary structural design calculation of ships using Rule Book,
- 4. Mid-ship Section Drawing,
- 5. Longitudinal Construction Drawing,
- 6. Shell Expansion Drawing,
- 7. Capacity Plan calculations.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (COs)	PROGRAM OUTCOMES (POs)											
110.	COURSE OUTCOME (COS)		2	3	4	5	6	7	8	9	10	11	12
CO1	Produce general arrangement (GA), Lines Plan, Mid-ship section drawing, longitudinal construction & shell expansion drawings with the aid of CAD Software.			V									
CO2	2 Interpret & use rule books for structural design calculations.		V										
CO3	Prepare capacity plan of a ship.												
CO4	Use modern CAD programs for ship design drawings					1							

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Produce general arrangement (GA), lines plan, mid-ship section drawing, longitudinal construction & shell expansion drawings with the aid of CAD Software.	С3	2	5	3,4	R,Q,T, Pr
CO2	Interpret & use rule books for structural design calculations.	C2, C3	1		2-4	R,Q
CO3	Prepare capacity plan of a ship.	C4	1		5	R,Q,Pr
CO4	Use modern CAD programs for ship design drawings	C3			6	PR, T

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications								
	Students will learn various aspects and approaches of ship design drawings such as								
CO1-PO3	general arrangement (GA), lines plan, mid-ship section drawing, longitudinal								
CO1-PO3	construction & shell expansion to achieve solutions to real life problems related to								
	ship design in a systematic way.								
CO2-PO2	Students will gain knowledge on interpreting and using the rule books to carry out								
CO2-PO2	the scantling calculation for structural design of ship.								
CO3-PO3	Ability to prepare a capacity plan of ship improves student's judgment towards								
CO3-PO3	optimal solution from the alternate solutions								
CO4 PO5	The students have to use various modern CAD software that is use of modern								
CO4-PO5	engineering tool to draw various ship design drawings in the course.								

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

COURSE SCHEDULE

Week	Topics					
Week 1	Introduction to CAD, drawing unit and scale, 2-D drawing tools, modification tools					
	Layers, hatching and dimensioning					
Week 2	Working in 3-D space, 3-D coordinate systems, drawing sheet layout, viewpoints,					
3-D drawing tools, 3-D wire frame modelling, Surface modelling, Solid model						
	and rendering					
Week 3	Introduction to GA, Drawing of General Arrangement Plan in CAD software					
Week 4	Presentation and Review of General Arrangement Plan					
Week 5	Introduction to Lines Plan, Drawing of Lines Plan in CAD software					
Week 6	Presentation and Review of Lines Plan drawing					
Week 7	Preliminary structural design calculation of ships using Rule Book					
Week 8	Mid Term Assessment					
Week 9	Mid-ship Section Drawing					
Week 10	Longitudinal Construction Drawing					
Week 11	Shell Expansion Drawing					
Week 12	Capacity Plan calculations					
Week 13	Review Class					
Week 14	Final Quiz and Viva					

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	omponents	Grading	COs	Bloom's Taxonomy
	Lab participation and		CO 1	C3
Continuous	Lab participation and Report	25%	CO 2	C2, C3
Assessment	Keport		CO 3	C4
	Labtest-1,Labtest-2	10%	CO 1	C3

			CO 4	C3
	Project and Presentation	35%	CO1, CO2, CO3, CO4	C2,C3, C4
			CO 1	C3
I	Lab Quiz	30%	CO 2	C2, C3
			CO 3	C4
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Ships & Naval Architecture, R. Munro-Smith, 1973, Institute of Marine Engineers.
- 2. Basic Ship Theory, K.J. Rawson & E. C. Tupper, Vol. 1 & 2., Longman Group Limited.
- 3. Rule Book: Lloyd's Register, DNV-GL, NKK

COURSE INFORMATION

Course Code: NAME 213

Course Title: Fluid Mechanics

Credit Hours: 3.0

Contact Hours: 3.0

Level and Term: Level 2 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This is a compulsory theoretical course to promote the knowledge of the students about basic laws, principles and phenomena in the area of fluid flow related engineering problems. The course has also been designed to familiarize the students in the working principles of the design of Hydraulic Machineries used onboard ships.

OBJECTIVES

- 1. To enable achieving ability to apply the basic applied mathematical tools that support fluid dynamics.
- 2. To impart knowledge to identify & explain the physical properties of a fluid, its influence on fluid flow & fundamental kinematics of a fluid element
- 3. To make proficient to explain & formulate the conservation principle of mass, linear momentum and energy for fluid flow. & interpret the working principles of different hydraulic machineries used on board ship.
- 4. To enable to design & create models of the prototype to investigate different parameter during fluid flow over the profiles and shapes

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Demonstrate** the understanding in applying the basic applied mathematical tools that support fluid dynamics.
- 2. **Explain** the knowledge to identify the physical properties of a fluid, its influence on fluid flow & fundamental kinematics of a fluid element
- 3. **Construct** the formulations of the conservation principle of mass, linear momentum and energy for fluid flow and interpret the working principles of different hydraulic machineries used on board ship
- 4. **Design & create** models of the prototype to investigate different parameter during fluid flow over the profiles and shapes

COURSE CONTENTS

- 1. **Fluid properties:** Classification of Fluid Flows, Density and Specific Gravity, Energy and specific heats, Compressibility and Bulk Modulus, Viscosity, Surface Tension and Capillary Effect.
- 2. **Fluid statics and kinematics:** Pressure head, Pascal's law, Instruments to measure fluid pressure, Total pressure on horizontally, vertically and inclined immersed surfaces, Pressure on

a curved surface, Centre of pressure on an inclined immersed surface, Lagrangian and Eulerian descriptions of fluid kinematics, Streamlines and Streamtubes, Pathlines, Streaklines, Timelines, Refractive and surface flow visualization techniques, Plots of fluid flow data, Types of motion or deformation of fluid elements, The Reynolds Transport Theorem, Bernoulli's equation, Euler's equation of motion, Limitations of Bernoulli's equations, Practical Applications of Bernoulli's equation, Venturimeter, Discharge through a Venturimeter, Orifice Meter, Pitot Tube, Discharge over a Rectangular Notch, Discharge over a Triangular Notch.

- 3. **Continuity, energy and momentum principle:** Conservation of Mass, Mass and Volume flow rates, Moving or deforming control volumes, Incompressible flow, General Equation of Energy, Newton's Laws and Conservation of Momentum, The linear Momentum equation.
- 4. **Friction and flow through pipes, impact of jets:** Loss of head in pipes, Darcy's and Chezy's Formula for loss of head in pipes, Graphical representation of Pressure head and velocity head, Hydraulic Gradient line, Total Energy Line, Transmission of power through pipes, Time of emptying a tank through a long pipe, Force of Jet Impinging Normally on fixed, hinged, inclined and moving plate, Force of jet impinging on a fixed and moving curved vane.
- 5. **Laminar and turbulent flows:** Introduction to boundary layers, drags, and wakes, Drag and Lift, Friction and Pressure Drag, Drag coefficients of common geometries, Parallel flow over flat plates, Flow over cylinders and Spheres, Lift.
- 6. **Dimensional analysis, principles of similitude and model testing:** Fundamental Dimensions, Dimensional Homogeneity, Uses of the principle of Dimensional Homogeneity, Methods of Dimensional Analysis, Rayleigh's Method, Buckingham's Pi-theorem, Selection of Repeating Variables, Advantages of Model Analysis, Hydraulic Similarity, Procedures for model analysis, Comparative studies between prototype and undistorted model.
- 7. **Aerofoil and its application:** Theory of wings, Cavitation.
- 8. **Hydraulic machines:** Reciprocating and Centrifugal pumps, pump efficiency.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)										
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	Demonstrate the understanding in applying the												
CO1	basic applied mathematical tools that support												
	fluid dynamics.												
	Explain the knowledge to identify the physical												
CO2	properties of a fluid, its influence on fluid flow												
	& fundamental kinematics of a fluid element												
	Construct the formulations of the conservation												
	principle of mass, linear momentum and energy												
CO3	for fluid flow and interpret the working												
	principles of different hydraulic machineries												
	used on board ship												
	Design & create models of the prototype to												
CO4	investigate different parameter during fluid												
	flow over the profiles and shapes												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Demonstrate the understanding in applying the basic applied mathematical tools that support fluid dynamics.	С3	1		1-4	CT, F
CO2	Explain the knowledge to identify the physical properties of a fluid, its influence on fluid flow & fundamental kinematics of a fluid element	C2	1		1-4	CT, MT, F
CO3	Construct the formulations of the conservation principle of mass, linear momentum and energy for fluid flow and interpret the working principles of different hydraulic machineries used on board ship	C3	3		5	CT/ASG, F
CO4	Design & create models of the prototype to investigate different parameter during fluid flow over the profiles and shapes	C6	1		5-6	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to understand physical properties of a fluid flow & calculate different parameters of fluid dynamics.
CO2-PO2	In order to identify & analyze the fluid flow characteristics & its influence on the
	fundamental kinematics of a fluid element.
CO3-PO2	To analyze conservation principle of mass, momentum and energy for fluid flow &
	interpret the working principles of different hydraulic machineries used onboard ship
CO4-PO3	The capability to design and create models of prototypes has to be achieved to
	investigate different parameter during fluid flow over the profiles and shapes.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	

Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Fluid properties	
Class 1	Introduction	
Class 2	Classification of Fluid Flows, Density and Specific Gravity, Energy and	
	specific heats, Compressibility and Bulk Modulus,	
Class 3	Viscosity, surface Tension and Capillary Effect.	
Week 2	Fluid statics and kinematics	
Class 4	Pressure head, Pascal's law, Instruments to measure fluid pressure	CT-1, Final
Class 5	Total pressure on horizontally, vertically and inclined immersed surfaces	Exam
Class 6	Pressure on a curved surface, Centre of pressure on an inclined immersed	
	surface	
Week 3	Fluid statics and kinematics	
Class 7	Lagrangian and Eulerian descriptions of fluid kinematics, Streamlines	
	and Streamtubes, Pathlines, Streaklines, Timelines,	
Class 8	Refractive and surface flow visualization techniques, Plots of fluid flow	
	data	
Class 9	Types of motion or deformation of fluid elements,	
Week 4	Fluid statics and kinematics	
Class 10	The Reynolds Transport Theorem	
Class 11	Bernoulli's equation	
Class 12	Assessment 01	
Week 5	Fluid statics and kinematics	
Class 13	Euler's equation of motion	CT-2, Mid
Class 14	Limitations of Bernoulli's equations, Practical Applications of	Term, Final
	Bernoulli's equation	Exam
Class 15	Venturimeter, Discharge through a Venturimeter	
Week 6	Fluid statics and kinematics	
Class 16	Orifice Meter, Pitot Tube	
Class 17	Discharge over a Rectangular Notch, Discharge over a Triangular Notch	
Class 18	Conservation of Mass, Mass and Volume flow rates	
Week 7	Continuity, energy and momentum principle	
Class 19		
	Equation of Energy	
Class 20	Newton's Laws and Conservation of Momentum, The linear Momentum	
	equation.	
Class 21	Loss of head in pipes, Darcy's and Chezy's Formula for loss of head in	

	pipes	
Week 8	Friction and flow through pipes, impact of jets	Mid Term
Class 22	Graphical representation of Pressure head and velocity head, Hydraulic	Exam, Final
	Gradient line, Total Energy Line	Exam
Class 23	Transmission of power through pipes, Time of emptying a tank through a	
	long pipe	
Class 24	Assessment 02	
Week 9	Friction and flow through pipes, impact of jets	
Class 25	Force of Jet Impinging Normally on fixed, hinged, inclined and moving	
	plate,	
Class 26	Force of jet impinging on a fixed and moving curved vane.	
Class 27	Revision Class	
Week 10	Laminar and turbulent flows	
Class 28	Introduction to boundary layers, drags, and wakes	
Class 29	Drag and Lift, Friction and Pressure Drag, Drag coefficients of common]
	geometries	
Class 30	Parallel flow over flat plates, Flow over cylinders and Spheres, Lift	
Week 11	Dimensional analysis, principles of similitude and model testing	
Class 31	Fundamental Dimensions, Dimensional Homogeneity	
Class 32	Uses of the principle of Dimensional Homogeneity, Methods of	CT-3/
	Dimensional Analysis	Assignment,
Class 33	Rayleigh's Method, Buckingham's Pi-theorem, Selection of Repeating	Final Exam
	Variables	
Week 12	Dimensional analysis, principles of similitude and model testing	
Class 34	Advantages of Model Analysis	
Class 35	Hydraulic Similarity, Procedures for model analysis	
Class 36	Comparative studies between prototype and undistorted model	
Week13	Hydraulic machines	
Class 37	Centrifugal pumps.	
Class 38	Reciprocating Pumps	
Class 39	Pump efficiency	
Week 14	Aerofoil and its application]
Class 40	Theory of wings, Cavitation]
Class 41	Assessment]
Class 42	Course review	1

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	СО	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	370	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
Final Exam		60%	CO1	C1, C2

		CO2	C1, C2,C4
		CO3	C4
		CO4	C4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. A Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines, R.S. Khurmi, 19th Edition, S. Chand & Company Ltd., 2004.
- 2. Fluid Mechanics: Fundamentals and Applications, Y.A. Cengel and J.M. Cimbala, 1st edition, McGraw Hill Publishers Ltd., 2006.
- 3. A Textbook of Fluid Mechanics and Hydraulic Machines, R.K. Bansal, 2005.
- 4. Theory and Applications of Ocean Surface Waves, C.C. Mei; M. Stiassnie; D.K.P. Yue, 2005, World Scientific Publishing Co. Pvt. Ltd

COURSE INFORMATION

Course Code: NAME 214 Credit Hours: 1.50
Course Title: Fluid Mechanics Lab Contact Hours: 3.00

Level and Term: Level 2 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This sessional course introduces the principles of fluid mechanics of mechanical systems. Students will be exposed to the experimental methods in the fluid flow systems like flow measurement in closed/open conduits including friction loss, pump performance, center of pressure and buoyancy. By the end of this course students should be able to understand the basic principles and analysis of both static and dynamic fluid systems

OBJECTIVES

- 1. To familiarize the students with different types of pumps.
- 2. To impart training to use various flow measuring devices for making engineering judgments.
- 3. To provide practice in estimating friction losses in fluid flow.
- 4. To develop understanding about hydrostatic law, principle of buoyancy and stability of a floating body and application of mass, momentum and energy equation in fluid flow.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the basic operating principle of a reciprocating and centrifugal pump.
- 2. **Verify** the Bernoulli's Theorem and **apply** it in flow measuring devices.
- 3. Analyze the head loss due to friction occurring in fluid flow.
- 4. **Apply** the knowledge of hydrostatic loading to calculate centre of pressure and buoyancy.
- 5. **Develop** collaborative nature by **discussing** and **performing** as a group and **organize** project tasks maintaining solidarity during the group projects and presentations.

COURSE CONTENT

- 1. Performance Test of a reciprocating pump
- 2. Performance test of Centrifugal Pump Connected in Series and Parallel Connections
- 3. Study of Propeller Turbine Characteristics
- 4. Verification of Bernoulli's Equation
- 5. a) Study of Flow through Orifice
 - b) Study of Flow through Venturi Meter
- 6. a) Calibration of Rectangular Notch
- 7. b) Calibration of Triangular Notch (V)
- 8. Determination of the location of the center of pressure for a submerged plane surface
 - 9. Determination of Centre of gravity, Metacenter and Buoyancy of a floating vessel.

10. Determination of Head Loss Due to Pipe Friction.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOME (COs)	PROGRAM OUTCOMES (PO)											
No.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the basic operating principle of a reciprocating and centrifugal pump.		√										
CO2	Verify the Bernoulli's Theorem and apply it in flow measuring devices.					1							
CO3	Analyze the head loss due to friction occurring in fluid flow.		√										
CO4	Apply the knowledge of hydrostatic loading to calculate centre of pressure and buoyancy.		1										
CO5	Develop collaborative nature by discussing and performing as a group and organize project tasks maintaining solidarity during the group projects and presentations.									V			

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the basic operating principle of a reciprocating and centrifugal pump.	C2			1,2	R,Q,T
CO2	Verify the Bernoulli's Theorem and apply it in flow measuring devices.	С3	1	1	6	R,Q,T
CO3	Analyze the head loss due to friction occurring in fluid flow.	C4	2	1	1-4	R,Q,T
CO4	Apply the knowledge of hydrostatic loading to calculate centre of pressure and buoyancy.	C3			1-4	R,Q,T
CO5	Develop collaborative nature by discussing and performing as a group and organize project tasks maintaining solidarity during the group projects and presentations.	A1, A2, A3, A4		1	7	Pr, PR

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

CO1-PO2	Students will gain the basic experimental knowledge to explain the basic operating
CO1-FO2	principle of a reciprocating and centrifugal pump.
	Students will carry out experiment on verification the Bernoulli's Theorem and will
	be able to apply it to do experiment with modern flow measuring devices like
CO2-PO5	venturimeter, orifice meter and different types of notch. And also they should be
	able to interpret and analyze the given flow problem and select the required
	instrument used for flow measurement.
	If a data regarding the details of the flow of a real fluid is given then the students
CO3-PO2	should be able to interpret the data and applying the correct formula they should be
	able to calculate the energy loss
CO4-PO2	Student will apply the knowledge of hydrostatic loading to calculate centre of
CO4-FO2	pressure and buoyancy to solve engineering problems related to floating bodies.
	Students will discuss technical problems and assist each other are required while
CO5-PO9	working in a team as a team member or a leader to carry out each experiment ,hence
CO3-PO9	develop their function effectively as an individual, and as a member or leader in
	diverse teams and in multi-disciplinary settings

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Week	Topics
Week 1	Introduction to Fluid Mechanics Sessional
Week 2	Performance Test of a reciprocating pump
Week 3	Performance test of Centrifugal Pump Connected in Series and Parallel Connections
Week 4	Study of Propeller Turbine Characteristics
Week 5	Verification of Bernoulli's Equation

Week 6	Mid Term Assessment
Week 7	a. Study of Flow through Orifice
	b. Study of Flow through Venturi-Meter
Week 8	a. Calibration of Rectangular Notch
	b. Calibration of Triangular Notch (V)
Week 9	Determination of the location of the center of pressure for a submerged
	plane surface
Week 10	Determination of Centre of gravity, Metacenter and Buoyancy of a floating vessel
Week 11	Determination of Head Loss Due to Pipe Friction
Week 12	Review of all experiments
Week 13	Final Quiz
Week 14	Final Viva

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	omponents	Grading	COs	Bloom's Taxonomy
			CO1	C2
	Lab participation and	20%	CO2	C3
Continuous	Report	20%	C03	C4
Assessment			CO4	C3
(40%)	Labtest-1,Labtest-2	30%	CO1-CO4	C2,C3,C4
	Project and Presentation	25%	CO5	A1, A2, A3, A4
			CO1	C2
,	Lob Oviz	25%	CO2	C3
	Lab Quiz		C03	C4
			CO4	C3
T	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Fluid Mechanics: Fundamentals and Applications, Y.A. Cengel and J.M. Cimbala,
- 2. Introduction to Fluid Mechanics, Fox, R.W. and Mc Donald, A.T.
- 3. Mechanics of Fluids Irving H. Shames
- 4. Fluid Mechanics Frank M. White
- 5. Fluid Mechanics E. John Finnemore & Joseph B. Franzini

COURSE INFORMATION

Course Code: NAME 253
Course Title: Marine Hydrodynamics
Contact Hours: 3.0
Contact Hours: 3.0

Level and Term: Level 2 Term 2

PRE-REQUISITE

Course Code: NAME 213
Course Title: Fluid Mechanics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is intended to give students the skills to analyse the flow of fluid around shapes commonly in the design of marine vehicles, such as the vessel's hull, hydrofoils, propeller blades, etc. It is a compulsory theoretical course designed on the basis to understand the characteristics of fluid flow and its implication in the design of Marine Vehicles.

OBJECTIVES

- 1. To give brief idea about the flow around bluff and streamlined bodies and discuss the benefits of streamline,
- 2. To enable achieving ability to calculate the pressure distribution and wake field around a submerged body like ship.
- 3. To impart knowledge assessing the forces applied by the flow to submerged bodies in fluid by applying the knowledge of fluid flow principles, including conservation of mass, momentum and energy, Bernoulli's principle, the stream and potential functions, and sources and sinks.
- 4. To enable estimating the wave-induced loads on geometric shapes of floating structures and be able to apply the knowledge in Ship design.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** the hydrodynamic flow pattern around ship & calculate flow velocity at different point on the flow.
- 2. Compute the pressure distribution and wake field around a submerged body like ship.
- 3. **Assess** the forces applied by the flow to submerged bodies in fluid by applying the knowledge of fluid flow principles,
- 4. **Estimate** the wave-induced loads on geometric shapes of floating structures and be able to apply the knowledge in Ship design.

COURSE CONTENTS

1. **Flow of an ideal fluid:** Equation of continuity, streamlines, streak lines and path lines, two-dimensional flow patterns, rotational and irrotational flows, vorticity, velocity potential functions, stream functions, Euler's equation of motion, Bernoulli's equation, velocity and pressure distribution.

- 2. **Standard Patterns of Flow:** Uniform flow, irrotational vortex, circulation, source, sink and doublet, flow past a half body, cylinder and rankine body, virtual mass and Magnus effect.
- 3. <u>Conformal transformation:</u> Analytic functions, singularities, Cauchy-Riemann equations, complex potential, application of conformal transformation to some flow cases, joukowski's hypothesis, lift of an infinite aerofoil. Theorems of Green, Stokes, Cauchy and Blasius and their application to some hydrodynamic problems.
- 4. **Flow of a real fluid:** Navier-Stokes equations, displacement, momentum and energy, thickness of the boundary layer, Plane progressive waves, Wave energy, Two and three dimensional ship waves, the method of stationary phase, Energy radiation and wave resistance, Body response in regular waves, Wave exciting force and moment and characteristics of flow around a ship hull.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)											
110.	o. COURSE OUTCOMES (COs)		2	3	4	5	6	7	8	9	10	11	12
	Describe the hydrodynamic flow pattern												
CO1	around ship & calculate flow velocity at												
	different point on the flow.												
CO2	Compute the pressure distribution and wake												
CO2	field around a submerged body like ship.		V										
	Assess the forces applied by the flow to												
CO3	submerged bodies in fluid by applying the												
	knowledge of fluid flow principles,												
	Estimate the wave-induced loads on geometric												
CO4	shapes of floating structures and be able to												
	apply the knowledge in Ship design.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	CP	CA	KP	Assessment
		Taxonomy				Methods
	Describe the hydrodynamic flow					
CO1	pattern around ship & calculate low	C1	1		1-4	CT, F
	velocity at different point on the flow.					
	Compute the pressure distribution and					
CO2	wake field around a submerged body	C3	1		5	CT, MT, F
	like ship.					
	Assess the forces applied by the flow to					
CO3	submerged bodies in fluid by applying	C3	3		5	CT/ASG, F
	the knowledge of fluid flow principles,					
	Estimate the wave-induced loads on					
CO4	geometric shapes of floating structures	C2	1		1-4	MT, F
004	and be able to apply the knowledge in	C2	1		1-4	мі, г
	Ship design.					
(C1	Domamhar C2 Understand C2 Apply	C4 Anolygo (75 17.	volvoto	and C	Crosts:

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to find out flow pattern,
	hydrodynamic characteristics & calculate different properties of fluid flow.
CO2-PO2	In order to identify the role and extent of hydrodynamic parameters to calculate the
	pressure distribution and wake field around a ship.
CO3-PO3	To analyze & formulate hydrodynamic forces applied by the fluid flow around
	submerge/floating bodies.
CO4-PO4	To estimate the wave-induced loads on geometric shapes of floating structures and be
	confident to analyze & interpret data for Ship structure design.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Flow of an ideal fluid	
Class 1	Introduction	
Class 2	Ideal fluid, fluid properties, types of fluid flow	
Class 3	Pressure at a point,	
Week 2	Flow of an ideal fluid	
Class 4	Equation of continuity,	
Class 5	Streamlines, streak lines and path lines,	CT-1, Final
Class 6	Two-dimensional flow patterns,	Exam
Week 3	Flow of an ideal fluid	
Class 7	Rotational and irrotational flows, vorticity	
Class 8	Stream functions	

Class 9	Properties of stream functions						
Week 4	Flow of an ideal fluid						
Class 10	Velocity potential functions, flow nets						
Class 11	Euler's equation of motion	1					
Class 12	Veek 5 Standard Patterns of Flow						
Week 5	Standard Patterns of Flow	7					
Class 13	Uniform flow, irrotational vortex, circulation,	CT-2, Mid					
Class 14	Source, sink and doublet,	Term, Final					
Class 15	Flow past a half body	Exam					
Week 6	Standard Patterns of Flow						
Class 16	Flow past a cylinder and rankine body						
Class 17	Virtual mass						
Class 18	Magnus effect						
Week 7	Conformal transformation						
Class 19	Assessment 01						
Class 20	Analytic functions, singularities	_					
Class 21	Cauchy-Riemann equations						
Week 8	Conformal transformation						
Class 22	Complex potential, ,						
Class 23	Application of conformal transformation to some flow cases						
Class 24	Joukowski's hypothesis	Mid Term					
Week 9	Conformal transformation	Exam, Final					
Class 25	Lift of an infinite aerofoil	Exam					
Class 26	,						
Class 27							
Week 10	Conformal transformation						
Class 28	Theorems of Cauchy and Blasius						
Class 29	Application of the theorems to some hydrodynamic problems						
Class 30	Mid term exam						
Week 11	Flow of a real fluid						
Class 31	Navier-Stokes equations						
Class 32	Displacement, momentum and energy thickness of the boundary layer	CT-3/					
Class 33	Assessment 02	Assignment,					
Week 12	Flow of a real fluid	Final Exam					
Class 34	Plane progressive waves,	_					
Class 35	Wave energy,	_					
Class 36	Two and three dimensional ship waves	_					
Week13	Flow of a real fluid	_					
Class 37	Method of stationary phase, Energy radiation and wave resistance	_					
Class 38	Body response in regular waves,	_					
Class 39	Wave exciting force and moment	_					
Week 14	Flow of a real fluid	_					
Class 40	Characteristics of flow around a ship hull.	_					
Class 41	Assessment	_					
Class 42	Course review	1					

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Con	nponents	Grading	COs	Blooms Taxonomy
	Class Test/	200/	CO1, CO2,	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	G2 G4
Assessment			CO3	C3, C4
(40%)	Class	5%	CO1, CO2,	C6, A2
(1070)	Participation	370	CO3, CO4	00,112
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Fin	al Exam	60%	CO2	C1, C2,C4
	ai Lain	0070	CO3	C4
			CO4	C4
Tot	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Applied Hydrodynamics, H.R. Valentine, Newnes-Butterworth; Student international edition, 1969.
- 2. Newman, John N. (1977), Marine Hydrodynamics, The MIT Press, 432 pp., ISBN: 978-0262140263
- 3. Theoretical Hydrodynamics, Milne-Thomson, 4th edition, 1962.
- 4. Fluid Mechanics: Fundamentals and Applications, Y.A. Cengel and J.M. Cimbala, 1st edition, McGraw Hill Publishers Ltd., 2006.

COURSE INFORMATION

Course Code: NAME 254 Credit Hours: 1.50
Course Title: Marine Hydrodynamics Lab Contact Hours: 3.00

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Marine Hydrodynamics Sessional course is designed to teach students about the hydrodynamic application is ship and machinery design retrospect, namely types of floating structures, marine machinery parts etc. Students will be able to perform necessary calculations related to the basic design, assess performance calculations once the course is completed.

OBJECTIVES

- 1. To enable students to be familiarized with different flow patterns in application.
- 2. To familiarize the students with applied and calculative concept of hydrodynamics
- 3. To enable students to compute different parameters of ships, floating bodies using hydrodynamics concept.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** about different hydrodynamic features of various types of fluid flows.
- 2. **Identify** different kinds of fluid flow patterns.
- 3. **Demonstrate** and **Manipulate** the flow past different shapes and structure for observing laminar and turbulent flows.
- 4. **Develop** collaborative nature by **discussing** and **performing** as a group and **organize** project tasks maintaining solidarity during the group projects and presentations.

COURSE CONTENTS

- 1. Determination of the exact section of the Pitot tube
- 2. Determination of the flow speed profiles in a pitot tube
- 3. Determination of measure error using the pitot tube
- 4. Determination of ship stability
- 5. Demonstration of Cavitation Phenomenon
- 6. Determination of Impact against a flat, curve and semispherical surface
- 7. Study of forced vortex without discharge orifice
- 8. Observation of laminar, transition and turbulent flow and Classification of the different types of flow depending on Reynolds number
- 9. Ideal flow around a submersed profile
- 10. Demonstration the phenomenon associated to the flow in an open channel

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	Course Outcome	PROGRAM OUTCOMES (PO)							0)				
110.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Explain about different hydrodynamic	V											
	features of various types of fluid flows	. '											
CO2 Identify different kinds of fluid flow			V										
002	patterns		'										
	Demonstrate and Manipulate the flow												
CO3	past different shapes and structure for												
observing laminar and turbulent flows.													
	Develop collaborative nature by discussing												
CO4	and performing as a group and organize									V			
CO4	project tasks maintaining solidarity during									V			
	the group projects and presentations.												

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain about the different hydrodynamic features	C2	1	1	1-4	R,Q,T
CO2	Identify different kinds of flow patterns	C1	1	2	1-4	R,Q,T
CO3	Demonstrate and Manipulate the flow past different shapes and structure for better results;	С3	1	2	6	R,Q,T
CO4	Develop collaborative nature by discussing and performing as a group and organize project tasks maintaining solidarity during the group projects and presentations.	A1, A2, A3, A4		1	7	Pr, PR

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications		
CO1-PO2	In order to develop problem solving skill.		
CO2-PO2	To learn modern tools to solve hydrodynamics problems.		
CO3-PO3	In order to assess the analyzing and deconstructing capability of a student to solve a problem related to fluid flow.		
CO4-PO9	Students will discuss technical problems and assist each other are required while working in a team as a team member or a leader to carry out each experiment ,hence develop their function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings		

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by Experiment demonstration, experiment conduct by students in group, cooperative and collaborative method, project based method.

COURSE SCHEDULE

Week 1	Course introduction, Introduction to Machineries and equipment.				
Week 2	Determination of the exact section of the Pitot tube				
Week 3	Determination of the flow speed profiles in a pitot tube				
Week 4	Measure error determination using the pitot tube				
Week 5	Determination of ship stability				
Week 6	Cavitation Phenomenon Demonstration				
Week 7	Mid Viva/Mid Quiz				
Week 8	Determination of Impact against a flat, curve and semispherical surface				
Week 9	Study of forced vortex without discharge orifice				
Week 10	Observation of laminar, transition and turbulent flow				
	Classification of the different types of flow depending on Reynolds number				
Week 11	Ideal flow around a submerged flow				
Week 12	To demonstrate the phenomenon associated to the flow in an open channel				
Week 13	Final Viva				
Week 14	Quiz				

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	CO	Blooms Taxonomy
Continuous	Lab		CO 1	C2
Assessment	participation and	15%	CO 2	C1
(40%)	Report		CO 3	C3

	Mid-quiz		CO 1	C2
	or	25%	CO 2	C1
	Mid Viva		CO 3	C3
Final Viva		25%	CO 1	C2
		2370	CO 2	C1
Final Quiz		35%	CO 2	
		3370	CO 3	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Applied Hydrodynamics, H.R. Valentine, Newnes-Butterworth; Student international edition, 1969.
- 2. Marine Hydrodynamics, Newman, John N. (1977), The MIT Press, 432 pp., ISBN: 978-0262140263
- 3. Theoretical Hydrodynamics, Milne-Thomson, 4th edition, 1962.
- 4. Fluid Mechanics: Fundamentals and Applications, Y.A. Cengel and J.M. Cimbala, 1st edition, McGraw Hill Publishers Ltd., 2006.

COURSE INFORMATION

Course Code: NAME 258
Course Title: Stability and Machinery Layout Design
Contact Hours: 3.00

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is the third stage of Ship Design and Drawing which is a compulsory sessional course for future naval architects. Students will learn design and drawings of the principle propulsion and steering machineries of a ship which includes rudder, steering, shafting, propeller and main engine foundation. By understanding the complex propulsion system of a ship from this course, it is expected that students will be able to design a complete propulsion system along with proper drawings.

OBJECTIVES

- 1. To impart the knowledge to carry out the calculation of stability of a ship.
- 2. To familiarize the students with the arrangement and functions of propulsion and steering system of ships.
- 3. To design of rudder along with its stock and selection of an appropriate steering gear.
- 4. To enable selection of proper scantlings by exact calculations to design the engine room foundation.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Prepare** and **explain** the stability booklet of a ship.
- 2. **Demonstrat**e methodological knowledge and understanding in ship's rudder, steering and shafting system design.
- 3. **Design** ship steering and shafting system.
- 4. **Develop** critically, independently and creatively design of propulsion system of a ship.

COURSE CONTENTS

- 1. Detail ship stability calculation and stability booklet preparation.
- 2. Design of a marine rudder
- 3. Design of ship steering gear system
- 4. Design of shafting arrangement system and propeller shaft
- 5. Calculation and drawing of ship engine foundation

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (CO)	PROGRAM OUTCOMES (PO)
-----	----------------------	-----------------------

		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Prepare and explain the stability booklet		V										
	of a ship		'										
	Demonstrat e methodological knowledge												
CO2	and understanding in ship's rudder,												
	steering and shafting system design												
CO3	Design ship steering and shafting system												
	Develop critically, independently and												
CO4	creatively design of propulsion system of												
	a ship												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (CO)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Prepare and explain the stability booklet of a ship	C2-C4	1	-	1	R,Q
CO2	Demonstrat e methodological knowledge and understanding in ship's rudder, steering and shafting system design	С3	2	-	4	R,Q
CO3	Design ship steering and shafting system	C3, C4	3	-	1-5	R,Q
CO4	Develop critically, independently and creatively design of propulsion system of a ship	C4,C5	3	-	1-6	R,Q

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
	Students will be able to carry out the detailed ship stability calculation using various
CO1-PO2	tools and criteria. Using the result, they will be able to prepare the stability booklet
	of a ship.
	By understanding the complex propulsion system of a ship from this course,
CO2-PO2	students will be able to apply knowledge of complete propulsion system in
	designing a ship
	Students will be able to explain the steering system and machinery arrangement.
CO3-PO3	With the calculation, they will be able to design steering and shafting system for a
	ship.
CO4-PO3	In order to develop critically, independently and creatively design of propulsion
CO4-PO3	system of a ship.

TEACHING LEARING STRATEGY

Teaching and Learning Acti	viting	Engagement
Teaching and Learning Acti	villes	(hours)

Face-to-Face Learning	
Lecture	12
Demonstration	30
Self-Directed Learning	
Preparation of Lab Reports	35
Preparation of Quiz	10
Preparation of Presentation	
Engagement in Group Projects	33
Formal Assessment	
Total	120

TEACHING METHODOLOGY

Lecture followed by demonstration of engineering drawings and design, discussion and assignment submission.

COURSE SCHEDULE

Week	Name of the Experiment		
Week-1	Course introduction, Overall discussion of ship stability , ship steering		
	system, shafting system, propeller and main engine foundation.		
Week-2	Ship Stability Calculation		
Week-3	Ship Stability Calculation		
Week-4	Ship Stability Calculation		
Week-5	Introduction to rudder system, Calculation for rudder system(part 1)		
Week-6	Calculation for rudder system(part 2)		
Week-7	Mid Viva		
Week-8	Introduction to steering system, Calculation for steering system(part 1)		
Week-9	Calculation for steering system(part 2)		
Week-10	Introduction to shafting system, Calculation for shafting system		
Week-11	Week-11 Calculation for engine foundation(part 1)		
Week-12	Week-12 Calculation for steering system(part 2)		
Week 13	Final Viva		

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Bloom's Taxonomy
	Lab participation	20%	CO 1	C1, C3,A1
			CO 2	C4, C5, A1
			CO 3	C3, C4
Continuous			CO 4	C3
Assessment	Lab Report 40%	40%	CO 1	C1, C3,C4
(40%)			CO 2	C4, C5, P1
			CO 3	C3, C4
			CO 4	C3
	Viva	15%	CO 1, CO 2, CO 3	A1, A2, A3, A4

		CO 1	CO 2
Lob Oviz	25%	CO 2	CO 3
Lab Quiz	2370	CO 3	C3, P6, P7
		CO 4	C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. The Principles of Naval Architecture, Vol 1, Stability and Strength, Published by SNAME
- 2. Ship Hydrostatics and Stability, Adrian Biran
- 3. Reed's Naval Architecture for Marine Engineers, E.A. Stokoe, 2003, Thomas Reed Publications.
- 4. Ship Stability for Masters and Mates, D. R Derrett.
- 5. Ship Design: Methodologies of Preliminary Design by Apostolos Papanikolaou
- 6. Practical Design of Hull Structures by Masaki Mano
- 7. Design Principles of Ships and Marine Structures by Suresh Chandra Misra

COURSE INFORMATION

Course Code: NAME 300 Credit Hours: 3.0 (1.5 Cr. Hr. in Each Term)

Course Title: Ship design Project Contact Hours: 6.0

Level and Term: Level 3 Term 1/2

PRE-REQUISITE

Course Code: NAME 158, NAME 208, NAME 258

Course Title: Basic Ship Design, Computer Aided Ship Design, Stability and Machinery Layout

Design

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Compulsory Sessional course which is intended to assist the reality of accepting a design brief from a client/owner, researching the requirements, coming up with the design of a vessel which will meet those requirements, and preparing the documentation (drawings, calculations and specification of outfit items) to describe the vessel so that it may be built. These courses also provide a solid grounding in the overall ship design process.

OBJECTIVES

- 1. To enable students to design a general arrangement plan and lines plan as required of the design brief
- 2. To enable students to compute hydrostatic properties of ship and able to draw hydrostatic curves.
- 3. To enable students to calculate scantlings and make midship section and longitudinal drawings.
- 4. To enable students to make decision of selecting engine and propeller.
- 5. To enable students to make decision of designing a complete vessel.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Produce** a suitable hull form by using maxsurf and translate to a lines plan and a general arrangement drawing in Autocad.
- 2. **Evaluate** the stability of the vessel and selecting engine and propeller.
- 3. **Perform** scantlings calculation and mid ship section drawing of a vessel.
- 4. **Describe** new thinking and innovation processes of ship design.

COURSE CONTENTS

- 1. Design of a particular ship: principal particulars,
- 2. General Arrangement (GA),
- 3. Lines plan with offset table, Lightship,
- 4. Preliminary deadweight and displacement calculation,
- 5. Freeboard Calculation,
- 6. Scantling, Mid-ship section drawing,
- 7. Longitudinal Drawing: Profile Deck & Bottom,

- 8. Shell Expansion Drawings,
- 9. Detailed LWT & DWT calculation,
- 10. Resistance & Power Calculation, machinery, endurance, outfit,
- 11. Approximate trim and cross curves, Stability for different loading conditions, Wind heel criteria for different loading conditions,
- 12. Engine selection, Engine Foundation,
- 13. Rudder design & Steering Arrangement,
- 14. Shafting & Propeller Design.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (CO)	PR		PROGRAM OUTCOMES (PO)										
140.	COURSE OUTCOME (CO)	1	2	3	4	5	6	7	8	9	10	11	12	
	Produce a suitable hull form by using													
CO1	maxsurf and translate to a lines plan and a													
	general arrangement drawing in autocad.													
CO2	Evaluate the stability of the vesseland										ار			
CO2	selecting engine and propeller.										l v			
CO3	Perform scantlings calculation and mid	1												
COS	ship section drawing of a vessel.	V												
CO4	Describe a new thinking and innovation									,			2/	
CO4	processes of ship design.												V	

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (CO)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Produce a suitable hull form by using maxsurf and translate to a lines plan and a general arrangement drawing in AutoCAD.	C3				R,Pr,Q
CO2	Evaluate the stability of the vessel and selecting engine and propeller.	C3				R,Pr,Q
CO3	Perform scantlings calculation and mid ship section drawing of a vessel.	A2	1		1-4	R,Pr,Q
CO4	Describe a new thinking and innovation processes of ship design.	C3	1			R,Pr,Q

 $⁽C1-Remember,\,C2-Understand,\,C3-Apply,\,C4-Analyze,\,C5-Evaluate,\,and\,C6-Create;$

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO9	It is required teamwork as well as individual work in order to develop a suitable
CO1-F09	hull, lines pan and general arrangement.
CO2-PO10	It is required to make a effective presentation and clear instructions to evaluate the
CO2-PO10	stability of the vessel and to select engine and propeller of ship.
CO3-PO1	The knowledge of science has to be applied to perform scantlings calculation and
CO3-PO1	mid ship section drawing of a vessel.

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

CO4-PO1	In order to develop a concept of innovation processes of ship design.
---------	---

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab-test	7
Preparation of Quiz	7
Preparation of Presentation	7
Engagement in Group Projects	28
Formal Assessment	1
Total (Each Term)	120

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method.

COUSRE SCHEDULE

Term-I

Lecture-1	Course administration, instructors, contents, mark distribution, ethics, tools etc.					
	Project inputs and allotment of projects to the students					
	Preliminary lightship, deadweight and displacement calculation and					
	determination of preliminary principal particulars (L, B, D, T, etc.) (Using					
	empirical formulae).					
Lecture-2	Issues with principal particulars					
	Preliminary GA plan; space allocation for cargo and consumables.					
	Floodable length calculation, watertight subdivision, Preliminary freeboard					
	calculations.					
	Arrangement of propulsion machinery, deck machinery etc., Equipment					
	number calculation, accommodation arrangement.					
Lecture-3	Preliminary GA arrangement (sketch in paper) for review					
	Issues with General Arrangement					
Lecture-4	Submission of Preliminary GA arrangement.					
	3D surface model generation (in Rhino/ Maxsurf), preliminary displacement					
	and draft check,					
	Compartmentation, cargo and consumables capacity check.					
Lecture-5	Issues with 3D model in Rhino and Maxsurf.					
Lecture-6	Preliminary hydrostatic report, lines and offset table generation from 3D model.					
FIRST PRESENTATION						

Lecture-8	Determination of ship scantling using class rule book Midship section drawing						
Lecture-9	Review and problem solving on ship scantling using class rule book						
	Midship section drawing						
Lecture-11	Guidance on shell expansion, profile and deck plan and other ship drawings						
Lecture-12	Review of shell expansion, profile and deck plan and other ship drawings.						
Lecture-13	Detail lightship calculation (using scantling drawings + GA in Excel) +						
	Guidance in stability load cases						
Lecture-14	Review and advise on the preliminary trim and stability calculation						
SECOND PRESENTATION							

Term-II

Lecture-1	Resistance & power calculation, main engine selection					
Lecture-2	Propeller design, gear box selection and shafting design.					
Lecture-3	Rudder design & steering arrangement					
Lecture-4	Propulsion arrangement (ME, GB, shafting, propeller and rudder) + ME					
	foundation.					
Lecture-5	Final weight estimation (hull + mach) including weight margin.					
Lecture-6	GA, lines and offset table, hydrostatic, trim & stability updates.					
	THIRD PRESENTATION					
Lecture-8	Propulsion arrangement (ME, GB, shafting, propeller and rudder)					
Lecture-9	Final weight estimation (hull + mach) including weight margin.					
Lecture-10	GA, lines and offset table updates					
Lecture-11	Hydrostatic, trim & stability updates.					
Lecture-12	Review and discussion on report writing					
Lecture-13	Quiz & Viva					
	FINAL PRESENTATION AND REPORT SUBMISSION					

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	omponents	Grading	COs	Bloom's Taxonomy
			CO 1	C1, C3,A1
	Lab participation and	20%	CO 2	C4, C5, A1
	Report	2070	CO 3	C3, C4
Cantinuana			CO 4	C3
Continuous Assessment			CO 1	C1, C3,C4
(40%)	Labtest-1,Labtest-2	30%	CO 2	C4, C5, P1
(4070)			CO 3	C3, C4
			CO 4	C3
	Project and Presentation	25%	CO 1, CO 2, CO 3	A1, A2, A3, A4
			CO 1	CO 2
,	oh Oviz	25%	CO 2	CO 3
1	Lab Quiz	23%	CO 3	C3, P6, P7
			CO 4	C3
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Practical Ship Design by D.G.M. Watson
- 2. Ship Design for Efficiency and Economy by H. Schneekluth & Bertram
- 3. Principles of Naval Architecture Series, Vol. I, Stability and Strength, published by SNAME
- 4. Principles of Naval Architecture Series, Vol. II, Resistance, Propulsion and Vibration, published by SNAME
- 5. Resistance and propulsion of ships, Sv Aa Harvald
- 6. Ship Knowledge, A Modern Encyclopaedia
- 7. Ship Stability for Master and Mates, Captain D.R Derrett, Butterworth Heineman.
- 8. Reed's Naval Architecture for Marine Engineers, E.A. Stokoe, 2003, Thomas Reed Publications.
- 9. Theoretical Naval Architecture, E.L. Attwood & H.S. Pengelly, 1962, Longmans Green & Co.Ltd.
- 10. Basic Ship Theory, K.J. Rawson & E. C. Tupper, Vol. 1 & 2., Longman Group Limited.
- 11. Naval Architecture: Examples and Theory, B. Baxter, Second Impression 1977, Charles Griffin & CompanyLtd.
- 12. Introduction to marine engineering, D.A.Taylor.
- 13. Marine Auxiliary Machinery by H. D. McGeorge

COURSE INFORMATION

Course Code: NAME 301 Credit Hours: 3.00
Course Title: Ship Structure Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

Course Code: NAME 201

Course Title: Mechanics of Structure

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This compulsory theoretical course is intended to provide students with a thorough understanding of the theory and application of structural analysis as it applies to the ship's columns, beams and frames. Emphasis is placed on developing the student's ability to calculate the deflection, buckling, shear force and bending moment of ship structural elements.

OBJECTIVES

- 1. To enable to impart knowledge on static and dynamic effect on ship structure.
- 2. Achieving ability to understand the theory and application of ship structural analysis.
- 3. To enable to calculate the longitudinal and transverse strength of ship structure.
- 4. To enable to calculate the buckling and wide plate bending of ship structure.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** structural elements of ships and crafts.
- 2. **Perform** calculation of stress, strain, displacement, shear force, bending moment and light weight of ship.
- 3. **Analyze** the longitudinal and transverse strength of ship structure at different loading conditions.
- 4. Evaluate the deflection, bending and buckling of ship structure subjected to dynamic loads.

COURSE CONTENTS

- 1. **Introduction to Ship Structure:** Structural analysis in Ship Design, steps in ship structural design process, Flowchart method for ship structural analysis, Classification of ship structures, Description of forces acting upon a ship at sea, Smith Effect, Slamming, Hogging, Sagging. Different types of Ship Motion, largest Hogging/Sagging bending moment, Calculation of buoyancy, shear force and bending moment, Total shear force and total bending moment for a ship amongst waves, Buoyancy curve in still water and weight curve, shearing force and bending moment curves, Buoyancy curves amongst waves compared with buoyancy in still water. Functions of the ship structures, Strength/distortion of ship structures.
- 2. **Longitudinal Strength of Ship Structure:** Assumed form of wave system for structural design, Difference between sinusoidal wave and trochoidal wave, Formation and necessity of trochoid. Distance between half height of a trochoidal wave and the

equivalent still water level, Buoyancy curves for different positions of wave, 'Sagging Condition' and 'Hogging Condition', Plotting the buoyancy curve, Light weight and dead weight, types of weights, plotting the weight curve.

Sir John. H. Biles approximation method, plotting the load, shearing force and bending moment curves from buoyancy and weight curves in calculation of longitudinal strength of a ship. Characteristics of shearing force and bending moment curves of a ship, Sketch the typical curves of load, shearing force and bending moment for a ship, Influence of position of wave on bending moment, Murray's approximate method for calculating the bending moment of a ship. Alternative method for calculating the approximate buoyancy moment, Alternative method for calculating the approximate weight moment, Equation for maximum bending moment of a ship, Calculation of maximum bending moment considering the position of maximum is at amidship.

- 3. Stresses in the Structure and the Calculation of Deflection: Definition of NA, Flexural rigidity of beam, Section Modulus Strain Curvature and Moment Curvature relation for a curved beam, Flexure Formula, Equation for the location of NA in the inclined condition of a Ship, Inclination for greatest and least stresses of an inclined Ship, Stress variation with angle of inclination of a ship, Formulation of the necessary steps for calculation of the deflection of ship structure, Shear Formula for a Structure. Influence of shear stress on bending theory stress, Strain energy method for calculating shear deflection, Derivation of equation of shear deflection and calculation of shear deflection, Maximum normal stresses at a cross section, Stress variation in a rectangular cross section for positive and negative bending moment, Different strain energies of a structure.
- 4. **Local strength problems:** Expression for Bending Moment and Deflection of a simply supported beam and its calculation, Expression for Bending Moment and Deflection of a fixed ended beam and its calculation. Equation for calculating Bending Moment of fixed ended beams, Procedure to determine the total BM of a fixed ended beam, Expressions of shearing force, bending moment and deflection for a flooded watertight bulkhead of a ship, Redundant Structures, Portal frame, Evaluation of the end/corner moment of a portal frame, Influence of rigidity of surrounding structure, Explanation of the importance of the rigidity of the post and stay of a derrick.
- 5. **Buckling of Structures:** Assumptions need to be considered in the theory of buckling structures. Different states of equilibrium from the viewpoint of buckling of structures. Expression for critical load and critical stress for a hinged ended column, Expression for total maximum stress for a column with initial curvature, Expression for critical stress considering buckling of a simply supported rectangular plate.
- 6. **Dynamic Effects:** Response of ship due to its Heaving Motion in still water considering undamped vibration and damped vibration Influences on damping due to heaving motion, Equation for natural pitching period, Equation for pitching angle amongst waves.
- 7. **Theory of Plates:** Bending of wide plates, Bending of panels of plating, Simply supported rectangular plates, Simply supported plate with uniformly distributed load, Solution of Plate Problem by strain energy method, Rectangular plate bending, Plates with clamped edges, Application of plane stress theory to ship structural problems, Simple grillage, Multi-stiffener grillages, Simply supported grillages. Two materials with the same elastic modulus, Two materials of different elastic moduli, Bending of a composite beam, Superstructure Efficiency, Crawford's Theory.

8. Introduction of FEM

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (POs)											
140.	COURSE OUTCOMES (COS)	s) <u>1</u>		3	4	5	6	7	8	9	10	11	12
CO1	Explain structural elements of ships and crafts.	1											
	Perform calculation of static and dynamic												
CO2	forces, displacement, shear force, bending												
	moment and light weight of ship.												
	Analyze the longitudinal and transverse												
CO3	strength of ship structure at different loading												
	conditions.												
	Evaluate the deflection , bending and												
CO4	buckling of ship structure subjected to												
	dynamic loads.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain structural elements of ships and crafts.	C2			1-4	CT, F
CO2	Perform calculation of static and dynamic forces, displacement, shear force, bending moment and light weight of ship.	A2	1		1-4	CT, MT, F
CO3	Analyze the longitudinal and transverse strength of ship structure at different loading conditions.	C4	3		5	CT/ASG, F
CO4	Evaluate the deflection, bending and buckling of ship structure subjected to dynamic loads.	C5	1		1-4	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to calculate stress-
	strain and forces of ship's structural elements.
CO2-PO1	In order to apply the mathematics knowledge to calculate the static and dynamic
	forces, displacement, shear force, bending moment and light weight of ship.
CO3-PO3	To design the longitudinal and transverse strength related problems of ship structure
	and solve them.
CO4-PO2	To analyze the deflection, bending and buckling related problems of ship structures

and solve them.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment			
Week 1	Introduction				
Class 1	Static forces acting upon a ship at sea, Buoyancy curve in still water and				
	weight curve.				
Class 2	Shearing force and bending moment curves of a ship, Buoyancy curves				
	amongst waves compared with buoyancy in still water, Dynamic forces				
	acting upon a ship at sea.				
Class 3	Degrees of freedom a ship has in a wave system, Possible distortion of the	CT 1,			
	ships structure with sketch, All the functions of the ship's structure.	Final Exam			
Week 2	Longitudinal Bending]			
Class 4	Difference between sinusoidal wave and trochoidal wave; The formation]			
	and necessity of trochoid.				
Class 5	Buoyancy curves for different positions of wave. 'Sagging Condition' and]			
	'Hogging Condition' with sketch.				
Class 6	The procedure for getting the ordinates of the buoyancy curve.]			
	Light weight and dead weight. The items of two types of weight.				
Week 3	Longitudinal Bending]			
Class 7	The distribution of weight of continuous material, Sir John H. Biles]			
	approximation, Distribution of dead weight items.				
Class 8	Procedure for calculating the shearing force and bending moment of ship's	-			
	structure, The characteristics of shearing force and bending moment				
	curves.				
Class 9	The typical curves of shearing force and bending moment, The influence	1			

	of position of wave on bending moment, Influence of weight distribution	
	on the bending moment.	
Week 4	Longitudinal Bending	
Class 10	Bending moment due to addition of weight, Approximations to bending	
	moment and shearing force, Murray's approximate method for calculating	
	the bending moment on a ship.	
Class 11	Mandelli's approximate method for calculating the bending moment on a	
	ship, Maximum shear force.	
Class 12	Assessment 01 (CT-1)	CT 2,
Week 5	Stresses in the Structure and the Calculation of Deflection	Final Exam
Class 13	Review of Bending Theory, Calculation of the Section Modulus, Calculate stresses in the inclined condition.	
Class 14	Sketch stresses in corners of section against angle of inclination from	
	vertical, Calculation of the deflection of the structure	
Class 15	Calculation of Shear Stress in the structure, Influence of shear stress on	
	bending stress.	
Week 6	Dynamic Effects	
Class 16	Strain energy method for calculating shear deflection, Load line standard	
	of longitudinal strength.	
Class 17	The main two dynamic effects, Influence of the motion of the water	
	particles on the buoyancy of a ship amongst waves.	
Class 18	Influence of ship motions on longitudinal strength, Heaving in still water.	
Week 7	Dynamic Effects (Continue)	
Class 19	Damped heaving in still water, Heaving amongst regular waves.	
Class 20	Influence of heaving amongst waves on longitudinal strength, Natural	
	pitching period.	
Class 21	Assessment 02 (CT-2)	
Week 8	Theories of Plates	
Class 22	Pitching amongst waves, Influence of pitching on longitudinal strength.	
Class 23	Bending of wide plates, Bending of panels of plating.	
Class 24	Simply supported rectangular plates, Simply supported plate with) (1 m
	uniformly distributed load.	Mid Term,
Week 9	Theories of Plates (Continue)	Final Exam
Class 25	Solution of Plate Problem by strain energy method, Rectangular plate bending.	
Class 26	Plates with clamped edges, Application of plane stress theory to ship	
	structural problems.	
Class 27	Simple grillage, Multi-stiffener grillages, Simply supported grillages.	
Week 10	Buckling of Structures	
Class 28	Critical Load for a hinged ended column, Columns with initial curvature.	
Class 29	Buckling of a wide plate, Buckling of a simply supported rectangular plate.	
Class 30	Application and Problems.	
Week 11	Buckling of Structures (Continue)	
Class 31	Assessment 03 (Mid Term Exam)	
Class 32	Strain energy method applied to the solution of elastic stability problems,	
	Influence of longitudinal stiffeners on the buckling strength of plating.	

Class 33	Influence of transverse stiffeners on the buckling of plating, Buckling of	CT 3,		
Class 33	curved panels of plating.	Final Exam		
Week 12	Local Strength Problems	- mai Exam		
Class 34	Bending moment and deflection of beams, Fixed ended beams with			
	arbitrary distribution of loading.			
Class 35	Expression for the shearing force, bending moment and deflection of			
	Bulkhead, Portal frame problem.			
Class 36	Watertight bulkheads, Stayed derrick post problem.			
Week13	Composite Constructions			
Class 37	Two materials with the same elastic modulus, Two materials of different			
	elastic moduli.			
Class 38	Bending of a composite beam, Application and Problems.			
Class 39	Assessment 04 (CT-3)]		
Week 14	Structural Discontinuities and Superstructures			
Class 40	Superstructure Efficiency, Crawford's Theory			
Class 41	Introduction to FEM			
Class 42	Course review	1		

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	3 70	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Fine	Final Exam		CO2	C1, C2,C4
Filiai Exaili		60%	CO3	C5,C4
			CO4	C5, C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Strength of ships' structure by W Muckle
- 2. Ship Structural Analysis and Design by Owen F Huges
- 3. Buckling of Ship Structure by Shama
- 4. Design of Ship Hull Structure by Yasuhisa Okumoto
- 5. Design Principles of Ships and Marine Structures by S C Misra

COURSE INFORMATION

Course Code: NAME 307 Credit Hours: 3.00
Course Title: Design of Special Ships Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

Course Code: NAME 207 Course Title: Ship Design

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The knowledge of Ship Design – II course is intended to provide the fundamental characteristics of a ship's design and how they affect its behaviour at sea are of crucial importance to many people involved in the design of all marine vessels. This course will help to develop and apply key theories and principles associated with the design of various types of vessels also develops fundamental naval architecture knowledge, including a thorough exploration of its concepts and how they are practically used in applications in ships.

OBJECTIVES

- 1. To enable to interpret and apply the design and iterative procedure principles of ship.
- 2. To enable to impart knowledge on appropriate calculations and interpret outcomes in naval architecture tasks.
- 3. To make skillful to explain a project that not only will satisfy regulations and requirements, but also will fit in the marine environment, economic trends and the accelerating advance of technology.
- 4. To enable to design different ship efficiently and effectively.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. Estimate the values of design optimization parameters, capacities and performances
- 2. **Apply** knowledge in practical ship designs.
- 3. Analyze design philosophy and design aspects of different type of ships
- 4. **Compare** characteristics of the design features of different ships

COURSE CONTENTS

- 1. Introduction to ship type.
- 2. **Cargo ship:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 3. **Passenger ship:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.

- 4. **Container Ship:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 5. **Ro-Ro Ship:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 6. **Tankers:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 7. **Trawler:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 8. **Tug:** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 9. **Dredger: -** Design, general arrangement, construction, midship section, structures, equipment, propulsion and other important systems, operations, environmental concerns, special features.
- 10. **High Speed Ship:** Design and construction including special characteristics. Hydrodynamics of small high-speed craft including planning hulls, air cushion vehicles, surface effect ships and catamarans.
- 11. **Submarine and Warship:** Design and construction including special characteristics.
- 12. **Sailing yacht:** Forces and moments acting on a sailing yacht, Speed polar diagrams, Two- and three-dimensional airfoil theory, Application to keel and rudder design, Yacht model testing.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO))		
110.	COURSE OF I COMES (COS)		2	3	4	5	6	7	8	9	10	11	12
CO1	Estimate the values of design optimization			J									
COI	parameters, capacities and performances			V									
CO2	Apply knowledge in practical ship designs.												
СОЗ	Analyze design philosophy and design				1								
	aspects of different type of ships.				٧								
CO4	Compare characteristics of the design							J					
	features of different ships.							٧					

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Estimate the values of design parameters, capacities and performances	C2	6		5	CT, F, ASG
CO2	Apply knowledge in practical ship designs and construction	C3	8		1-4	CT, MT, F
CO3	Analyze design philosophy and design aspects of different type of ships	C4	4		8	CT, F
CO4	Compare characteristics of different design stages	C5	7		7	MT, F
(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;						

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO3	Design solutions for complex engineering problems that meet specified needs with
	appropriate estimate the values of design parameters, capacities and performances
CO2-PO1	Apply knowledge of science and engineering fundamentals to the solution of
	complex engineering problems based on apply the knowledge in practical ship
	designs and construction.
CO3-PO4	To conduct investigations of complex problems using research-based knowledge to
	analyze the design philosophy and design aspects of different type of ships.
CO4-PO7	Understand and evaluate the sustainability and impact of professional engineering
	work to compare the characteristics of different design feature.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Design of General Cargo ship	
Class 1	Introduction to various ship types	
Class 2	Design, general arrangement, construction and midship section of cargo ship	
Class 3	Structural equipment, propulsion and other important systems of cargo ship	
Week 2	Design of General Cargo ship and Passenger ship	CT 1,
Class 4	Environmental concerns and special features of cargo ship, general	Final Exam

	arrangement, construction and midship section of passenger ship.	
Class 5	Structures, equipment, propulsion and other important systems of	
Cluss 3	passenger ship	
Class 6	Operations, environmental concerns and special features of passenger	
	ship	
Week 3	Design of Container Ship	
Class 7	Design, general arrangement, construction and midship section of container ships	
Class 8	Structures, equipment, propulsion and other important systems of container ships	
Class 9	Operations, environmental concerns and special features of container ships	
Week 4	Design of Ro-Ro Ship	
Class 10	Design, general arrangement, construction and midship section of Ro-Ro ships	
Class 11	Structures, equipment, propulsion and other important systems of Ro-Ro ships	
Class 12	Operations, environmental concerns and special features of Ro-Ro ships	
Week 5	Design of Oil Tanker	CT 2,
Class 13	Design, general arrangement, construction and midship section of tankers	Final Exam
Class 14	Structures, equipment, propulsion and other important systems of tankers	
Class 15	Operations, environmental concerns and special features of tankers	
Week 6	Design of Dredger	
Class 16	Design, general arrangement, construction and midship section of	
	dredgers	
Class 17	Structures, equipment, propulsion and other important systems of dredgers	
Class 18	Operations, environmental concerns and special features of dredgers	
Week 7	Design of Submarine and Warship	
Class 19	Design and construction of Submarines	
Class 20	Design and construction of Submarines	
Class 21	Design and construction of Frigate	
Week 8	Design of Submarine and Warship	
Class 22	Design and construction of Frigate	
Class 23	Design and construction of Corvette	Mid Term,
Class 24	Design and construction of Corvette	Final Exam
Week 9	Design of Special Type of Ship	
Class 25	Design and construction of OPV	
Class 26	Design and construction of OPV	
Class 27	Design and construction of LPC	
Week 10	Design of Special Type of Ship	
Class 28	Design and construction of LPC	
Class 29	Design and construction of LCT	
Class 30	Design and construction of LCVP	
Week 11	Design of High Speed Ship	
Class 31	Design and construction of High speed crafts including special	Mid Term,
	characteristics	Final Exam
Class 32	Design and construction of High speed crafts including special	
21435 32	characteristics	
Class 33	Design and construction of multi-hull vessels including special	
	characteristics	

Week 12	Design of High Speed Ship	
Class 34	Hydrodynamics of small high-speed craft including planning hulls	
Class 35	Hydrodynamics of small high-speed craft including air cushion vehicles	
Class 36	Hydrodynamics of small high-speed craft including surface effect ships	
Week13	Design of Sailing Yacht	
Class 37	Hydrodynamics of small high-speed craft including catamarans	
Class 38	Forces and moments acting on a sailing yacht	
Class 39	Speed polar diagrams	CT 3,
Week 14	Design of Sailing Yacht	Final Exam
Class 40	Two- and three-dimensional airfoil theory	
Class 41	Application to keel and rudder design	
Class 42	Yacht model testing	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Con	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C2, C3
Continuous	Assignment 1-3	2070	CO3	C3, C5
Assessment	Class	5%	CO1, CO2, CO3,	C4
(40%)	Participation	3 70	CO4	C4
	Mid term	15%	CO2, CO4	C2, C5
			CO1	C2
Fine	al Exam	60%	CO2	C3, C2,C5
17116	ai Exaiii	0070	CO3	C4
			CO4	C3
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Hydrodynamics of High Speed Marine Vehicles, O.M. Faltinsen, 2005, Cambridge University Press.
- 2. Practical Ship Design, D.G.M. Watson, 1998, Elsevier Science Ltd. Fiber Glass Boats, Hugo Du Plessis, 3rdE dition, 1996, McGraw-Hill Book Company.
- 3. Reeds Naval Architecture For Marine Engineers, E A Stoke
- 4. Modern Warship: Design and Development, Norman Friedman

COURSE INFORMATION

Course Code: NAME 308 Contact Hours: 3.00 Course Title: Application of ship design software Credit Hours: 1.50

Level and Term: Level 3 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Application of ship design software course is designed to teach students about the basic design drawings of different types of ship and floating structures by using AutoCAD, Maxsurf and Rhinoceros software. Students will be able to perform necessary calculations related to the basic design of ship, hydrostatic, trim and stability, resistance and required power calculations. It is expected that students will develop critical thinking about measuring characteristics of different parameters precisely, able to check their effects using calculations and finally chose the appropriate feature.

OBJECTIVES

- 1. To enable students to be familiarized and produce lines plan of ship in 2-D and transform 2-D lines plan into 3-D lines plan.
- 2. To enable students to generate ship's hull from 3-D lines plan.
- 3. To enable students to draw different types of ship from preliminary particulars and perform different types of analysis on the designed ship.
- 4. To apply trim, stability and resistance calculation on designed ship.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Produce** 2-D and 3-D lines plan from offset table.
- 2. **Develop** hull from 3-D lines plan using modern ship design software.
- 3. **Evaluate** and **assess** principal particulars and design ship from those data.
- 4. **Compute and analysis** hydrostatic properties of ships to **produce** hydrostatic curves and **prepare** trim, stability and resistance calculation of the designed ship.

COURSE CONTENTS

- 1. **Rhinoceros:** Introduction about the Rhinoceros software. Use of surface and solids. Use of 3-D lines generated in AutoCAD into Rhinoceros and develop hull surface.
- 2. **MAXSURF:** Introduction about the Maxsurf software. Use of generated hull in Rhinoceros into the Maxsurf and analysis of hydrostatics, stability parameters.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (POs)
110.	COURSE OUTCOMES (COS)	I KOGKAM OUTCOMES (108)

		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Produce 2-D and 3-D lines plan from												
	offset table.												
CO2	Develop hull from 3-D lines plan using					V							
002	modern ship design software.					V							
CO3	Evaluate and assess principal particulars	V											
CO3	and design ship from those data.	٧											
	Compute and analysis hydrostatic												
CO4	properties of ships to produce hydrostatic												N.
CO4	curves and prepare trim, stability and												V
	resistance calculation of the designed ship.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Produce 2-D and 3-D lines plan from offset table.	C3				R,T,PR
CO2	Develop hull from 3-D lines plan using modern ship design software.	C3				R,T,PR
CO3	Evaluate and assess principal particulars and design ship from those data.	C3, C3	1		1-4	R,T,PR
CO4	Compute and analysis hydrostatic properties of ships to produce hydrostatic curves and prepare trim, stability and resistance calculation of the designed ship.	C3	1		1-4	R,T,PR

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications							
CO1-PO1	Students will apply their knowledge to develop concept of 3-D lines plan.							
CO2-PO5	Students will acquire knowledge on modern software to draw 3-D lines plan, offset table and 3-D hull.							
CO3-PO1	Students will apply their knowledge to assess the requirement and estimation of principal particulars to design a ship.							
CO4-PO12	Students will acquire knowledge to evaluate the hydrostatic parameters, trim, stability and resistance of the designed ship at different loading conditions which will help them in life long term.							

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Practice at CAD Lab	30
Self-Directed Learning	
Preparation of Assignment	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by CAD session and discussion, co-operative and collaborative method, project-based method

COURSE SCHEDULE

Week	Topics
Week 1	Course introduction, generation of 2-D lines plan from offset table.
Week 2	Generation of 3-D lines plan from 2-D lines plan.
Week 3	Generation of 3-D lines plan from 2-D lines plan.
Week 4	Introduction to Rhinoceros software, basic command and drawings in Rhinoceros
Week 5	Hull generation on 3-D lines plan.
Week 6	Hull generation on 3-D lines plan.
Week 7	Introduction to Maxsurf software
Week 8	Hull generation in Maxsurf from principal particulars
Week 9	Hull generation and hull fairing
Week 10	Generation of hydrostatic curves in Maxsurf and perform stability calculation
Week 11	Stability criteria and different loading conditions
Week 12	Calculation of resistance in Maxsurf
Week 13	Review of the course contents
Week 14	Final Quiz and Viva

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Co	omponents	Grading	COs	Bloom's Taxonomy
G ti			CO 1	C1, C3
	Lab participation and	20%	20%	CO 2
Continuous	Report		CO 3	C3, C4
Assessment			CO 4	C3
	Labtest-1,Labtest-2	30%	CO 1	C1, C3

126

			CO 2	C4, C5
			CO 3	C3, C4
			CO 4	C3
	Project and Presentation	25%	CO 1, CO 2, CO 4	A1, A2, A4
			CO 1	CO 2
, T	Lab Quiz	250/	CO 2	CO 3
1	Lao Quiz	25%	CO 3	C3, P7
			CO 4	C3
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Manuals of Maxsurf
- 2. Manuals of Rhinoceros
- 3. Ship Design and Performance for Masters and Mates
- 4. Ship Stability for Masters and Mates
- 5. Theoretical Naval Architecture

COURSE INFORMATION

Course Code: NAME 309 Credit Hours: 3.0
Course Title: Marine Engineering-I Contact Hours: 3.0

Level and Term: Level 3 Term 2

PRE-REQUISITE

Course Code: NAME 177

Course Title: Thermal Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Compulsory Theoretical Course

Marine Engineering-I course is designed to teach students about the basic concepts of Engines, details of components, operation, combustion of Internal Combustion Engine, components & operation of Gas Turbine used in ships, Marine fuels & properties and components and details of Ships Shafting system. Students will be able to select the suitable marine engine, fuels and lubricants and shafting system for the ships including necessary calculations related with them. It is expected that students will be able to analyze critically for the selection of correct machinery and propulsion system for the designed ship. Students will also be able to analyze the defects of machinery and ships shafting system while working as Marine engineer on board.

OBJECTIVE

- 1. To provide basic concepts of Various Engine
- 2. To learn the details of Marine Engines and Gas Turbine.
- 3. To analyze the various defects and problems related to IC Engine.
- 4. To analyze and learn about different marine fuels.
- 5. To provide the concepts of Various shafting equipment and System

COURSE OUTCOMES (COS)

On successful completion of this course, students should be able to:

- 1. **Describe** the components and working aspects of different types of Internal Combustion engine and gas turbine
- 2. **Evaluate** the different types of special features of various types of marine engine and gas turbine
- 3. **Explain** the characteristics of different types of marine fuels
- 4. **Describe** the shafting system of a ship and the various components of shafting system

COURSE CONTENT

1. Marine Engines

a. **Diesel Engine**/ **CI Engine**: Related terminology and definitions, Valve timing diagram, CI engine: Basic parts of CI engines, Types, Combustion including phases, Fuel pump

mechanism and operation, governor mechanism and operation.

- b. **SI engine:** Combustion of SI engine, Carburettor, Supercharging, scavenging, low load running, lube oil testing etc, Engine operation, testing and Fuel metering.
- c. **Gas Turbine:** Description of major components of GT, Working principle, Practical session on GT propulsion, Construction of compressor and combustion chamber of GT, Various system of GT, Advantage and disadvantage.
- d. **Engine diagnosis and fault finding:** Crankcase explosion, Crankshaft deflection, Load trials. Selection criteria of marine engine.

2. Marine Fuels

Types (Petrol, Diesel, Octane, Biofuels etc.), Octane No, Centane No, Gravity and testing, Description and characteristics of HSDO, LHSDO, IFO

3. Power Transmission

- a Principle and mechanism of Gear box: Coupling and clutch, solid drive coupling, Fluid drive coupling, and other couplings.
- b. Description of ship's shafting system, Description of components, Construction and operation: Thrust block, Plummer block, Bulkhead gland, Stern tube, loose coupling.
- c. Shafting alignment requirements and various methods

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	course outcomes (cos)		PR	O	GR	AN	A C)U'	ГС	ON	IES	(POs	3)
110.			2	3	4	5	6	7	8	9	10	11	12
	Describe the components and working												
CO1	aspects of different types of Internal												
	Combustion engine and gas turbine												
	Evaluate the different types of special features												
CO2	of various types of marine engine and gas												
	turbine												
CO3	Explain the characteristics of different types				٦/								
COS	of marine fuels				V								
CO4	Describe the shafting system of a ship and the			٦/									
CO4	various components of shafting system			V									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the components and working aspects of different types of Internal Combustion engine and gas turbine	C1	1	1	1-4	CT, F
CO2	Evaluate the different types of	C3	1	1	1-4	CT/ASG, MT,

	special features of various types of					F
	marine engine and gas turbine					
CO3	Explain the characteristics of	Λ3	3	3	5	CT/ASG, MT,
CO3	different types of marine fuels	AS	3	3	3	F
	Describe the shafting system of a					
CO4	ship and the various components	A2	4	2	1-4	F
	of shafting system					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications					
CO1-PO1	The knowledge of components and working principle of different types of Internal					
	Combustion engine and gas turbine					
CO2-PO2	To Evaluate the different types of special features of various types of marine engine					
	and gas turbine					
CO3-PO4	To be able to explain the characteristics of different types of marine fuels					
CO4-PO3	This is required in order to describe the propulsion and shafting system of a ship					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introductory class	

130

Class 2	Marine Engines : Study of ICE, Related terminology	
Class 2 Class 3	Marine Engines: Study of ICE, Related terminology Marine Engines: Types of ICE, Operation of ICE	-
Week 2	Basics of IC Engine	1
Class 4	Study of CI engine: Basic parts of CI & SI engine	-
Class 5	Study of CI engine: Descriptions of components of CI engine	CT 1,
Class 6	Study of CI engine: Descriptions of components of CI engine	Final Exam
Week 3	Two stroke and four stroke IC engine	<u> </u>
Class 7	Study of CI engine: Two Stroke and Four Stroke ICE	1
Class 8	Study of operation of Four stroke IC engine	1
Class 9	Study of operation of Two stroke IC engine	-
Week 4	Combustion of CI &SI Engine	
Class 10	Study of CI engine: Combustion of CI engine	-
Class 11	Study of CI engine: Combustion of CI engine	1
Class 12	Study of CI engine: Combustion of SI engine	1
Week 5	Important Clearance and Fuel Injection System	CT 2,
Class 13	Study of IC engine: Important Clearances of IC engine	Final Exam
Class 14	Fuel Injection System, requirement and Types	1
Class 15	Fuel Injection System, Types	=
Week 6	Governor	=
Class 16	Governor, Types of Governor	=
Class 17	Basic operation of Governor	1
Class 18	Components and working principle of a governor	
Week 7	Low Load Running and Supercharging	
Class 19	Low Load Running, Effects of Low load running, Methods to overcome	1
	Low Load Running Effects	
Class 20	Supercharging, Turbo Charging	Mid Term,
Class 21	Assessment 02	Final Exam
Week 8	STC, Scavenging, Crank case Explosion	
Class 22	Description and operation of Sequential Turbocharging	
Class 23	Scavenging	
Class 24	Crank case explosion, causes and remedies	
Week 9	Fuel Timing and Tuning	
Class 25	Crank shaft deflection, reasons & remedies	
Class 26	Phasing, Calibration and Timing	
Class 27	Tuning of ICE	
Week 10	Problems related to ICE	
Class 28	Problems Related to ICE	
Class 29	Problems Related to ICE	
Class 30	Mid-term exam	
Week 11	Gas Turbine) / (1 T)
Class 31	Problems Related to ICE	Mid Term,
Class 32	Gas Turbine: Classifications, Advantage & disadvantage	Final Exam
Class 33	Gas Turbine: Description of major components]
Week 12	Gas Turbine]
Class 34	Gas Turbine: Working principle of GT	_
Class 35	Gas Turbine: Practical session on GT propulsion & working principle	

Class 36	Gas Turbine: Description of Compressor and combustion chamber of GT	
Week13	Ship's Shafting System	
Class 37	Gas Turbine: Practical session on GT	
Class 38	Power transmission: Description of ship's shafting system & description	
	of components	CT 3,
Class 39	Power transmission: Construction & Operation of Thrust block, Plummer	Final Exam
	block, Bulkhead gland ,Stern tube, Loose coupling	
Week 14	Shaft Alignment Methods	
Class 40	Power transmission: Rough methods Shaft alignment	
Class 41	Power transmission: Precision methods of Shaft alignment	
Class 42	Assessment	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	370	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Fine	al Exam	60%	CO2	C1, C2,C4
171116	ai Exaiii	0070	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Engineering Fundamentals of the internal combustion Engine Willard W. Pulkrabek
- 2. Maine Internal Combustion Engine A. B. Kane.
- 3. Marine Diesel Engine- Divehi Arana.
- 4. Pounder's Maine Diesel Engine and as Turbine- Doug woodland

COURSE INFORMATION

Course Code: NAME 310 Credit Hours: 1.50
Course Title: Marine Engineering Lab-I Contact Hours: 3.00

Level and Term: Level 3 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Marine Engineering Sessional – I course is designed to familiarized the students with various types of marine machineries and give an overview about their construction and working principles. The students will be able to relate their theoretical knowledge with the experiments performed in this course and comprehend those with industrial training.

OBJECTIVES

- 1. To give an overview and idea about the machineries used in marine vessels and shipbuilding industries
- 2. To enable students to be familiarized with the construction (assembling and disassembling), functions and performance test of different engine and its associated components.
- 3. The course will also be comprehended with an industrial visit to a reputed shippard and shipbuilding industry.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Outline** different kinds of marine machineries and knows their working principle and construction.
- 2. **Predict** the workability of the engines by interpretation of performance tests.
- 3. Comprehend the theoretical knowledge of transmission system with its practical functioning
- 4. **Infer** methods to develop efficient operation of machineries.

COURSE CONTENTS

- 1. Study of SI and CI engine
- 2. Dismantling and assembling of Diesel Engine
- 3. Study of valve timing and diagram
- 4. Study of tappet adjustment and bumping adjustment
- 5. Performance test of a high speed diesel engine
- 6. Study of automotive transmission system
- 7. Study of diesel power plant of MIST
- 8. Study of steam boiler and steam turbine unit
- 9. Study of Gas turbine
- 10. Study of air compressor and refrigeration system

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (POs)										
140.			2	3	4	5	6	7	8	9	10	11	12
CO1	Outline different kinds of marine machineries and knows their working principle and construction.	1											
CO2	Predict the workability of the engines by interpretation of performance tests.				V								
CO3	Conform the theoretical knowledge of transmission system with its practical functioning												
CO4	Infer methods to develop efficient operation of the machineries.									1			

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Outline different kinds of marine machineries and knows their working principle and construction.	C1			1-4	R,Pr
CO2	Predict the workability of the engines by interpretation of performance tests of the engines.	C2			1-4	R, Q, Pr
CO3	Conform the theoretical knowledge of transmission system with its practical functioning.	A2			1-4	R,Q,Pr
CO4	Infer methods to develop efficient operation of the machineries.	C4			1-4	R, Q, Pr

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The students will be able to identify the distinguishing features of marine machineries by utilizing the fundamental operating principle of them.
CO2-PO4	By interpreting the experimental data, students will predict the operating life and efficiency of engines.
CO3-PO1	Experiments performed on transmission system can help the students to recall and reproduces the theoretical knowledge.
CO4-PO9	Students will be able to perform and guide to ensure the effective measures to operate the machineries efficiently.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by experiments and discussion, co-operative and collaborative method, project based method.

COURSE SCHEDULE

Week	Name of the Experiment
Week-1	Course introduction, Introduction to different types of engines existed and
	auxiliary machineries in marine application.
Week-2	Study of SI and CI engine
Week-3	Dismantling and assembling of a Diesel Engine
Week-4	Study of valve timing and diagram
Week-5	Study of tappet adjustment and bumping adjustment
Week-6	Performance test of a high speed diesel engine
Week-7	Study of automotive transmission system
Week-8	Mid Term Assessment (Viva / Quiz)
Week-9	Study of diesel power plant of MIST
Week-10	Study of steam turbine unit and steam boiler
Week-11	Study of Gas turbine
Week-12	Study of air compressor and refrigeration system
Week-13	Review Class
Week-14	Final Assessment (Viva & Quiz)

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Bloom's Taxonomy
Continuous	Lab participation and Report	20%	CO 1	C2, C4
Assessment			CO 2	A2
(40%)			CO 3	C3, C4

			CO 4	C3, A3
	Labtest-1,Labtest-2	30%	CO 1	C1, C4
			CO 2	C4
			CO 3	C3, A2
			CO 4	C3
	Project and Presentation	25%	CO 1, CO 2, CO 3	A2, A3, A4
Lab Quiz		25%	CO 1	C1
			CO 2	C3, A2
			CO 3	C3,C4
			CO 4	C3
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Marine Auxiliary Machinery- H.D Mc George
- 2. Marine Auxiliary Machinery and System-M. Khetagurov
- 3. General Engineering Knowledge for Marine Engineers L. Jackson and T. D. Morton
- 4. Marine Auxiliary Machinery H.D. McGeorge

COURSE INFORMATION

Course Code: NAME 311 Credit Hours: 3.00
Course Title: Machine Elements Design Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

Course Code: NAME 201

Course Title: Mechanics of Structure

RATIONALE

Compulsory Theoretical course based on machine functions and mechanism to design machine elements for efficient operations.

OBJECTIVES

- 1. To enable to design considering stresses, stress concentration, failure theories and types of fits.
- 2. To achieve ability to familiarize the students with fracture mechanics, fatigue strength and strength of materials.
- 3. To teach students the design of screws, belt and chain drives, spring, welded and riveted connections.
- 4. To enable the students to design various types of gears.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Analyze** stress, stress concentration and suitable types of fits.
- 2. **Understand and analyze** fatigue strength and strength of material.
- 3. **Design** screws, springs, welded and riveted joints and belt & chain drives.
- 4. **Design** various types of gears.

COURSE CONTENTS

- 1. **Fundamental Principles of Machine Design:** Working Stresses and Failure Theories; Stresses in curved members; Deflection and stiffness considerations; Column design; Statistical considerations; Types of fits.
- 2. **Design parameters:** analysis with isotropic and anisotropic materials. Design for static strength; Fracture mechanics in design; Design for fatigue strength. Design of screws, fasteners and connections; Keys and couplings, welded and brazed joints; Shafts, keys and couplings, Power screws and bolted connections, Belt and chain drives, Brakes and clutches, Welded and Riveted Connections, rope, belt and chain drives. Springs,
- 3. Shaft Piston
- 4. **Gears and Gearing systems:** spur, helical, worm and bevel gears, Toothed gearing, Gear trains. Design of marine shafts, stern tube and associated bearings
- 5. **Shock and vibration:** Properties and design for damping and arresting of vibration. Bearings: Friction, Design of Journal, Ball, Needle and Roller bearings.
- 6. **Lubrication of machine elements:** Boundary, Hydrostatic and Hydrodynamic lubrication systems.

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)																
110.	COURSE OUTCOMES (COS)	1 2 3 4 5 6 7 8 9 10			11	12												
CO1	Analyze stress, stress concentration and	V	2/					2/										
COI	suitable types of fits.	, '		٧		•	'											
CO2	Understand and analyze fatigue strength		V															
CO2	and strength of material.				'		`	`										
CO3	Design screws, springs, welded and riveted		2/						1	2/	1							
COS	joints and belt & chain drives.			V														
CO4	Design various types of gears.																	

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Analyze stress, stress concentration and suitable types of fits.	C3	1		1-4	CT, F
CO2	Understand and analyze fatigue strength and strength of material.	C2	1		1-4	CT, Mid Term, F
CO3	Design screws, springs, welded and riveted joints and belt & chain drives.	C3	2		5	CT/ASG, F
CO4	Design various types of gears.	C3	2		5	Mid Term, F
(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;						

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to calculate stress,
COI-FOI	stress concentration.
CO2-PO2	Using engineering science complex issues related to strength of material has to be
CO2-FO2	analyzed.
CO3-PO3	To design solutions and system components using engineering science.
CO4-PO3	To design solutions and system components using engineering science.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-

Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction	
Class 2	Fundamental Principles of Machine Design	
Class 3	Working Stresses and Failure Theories	
Week 2	Stress and Deflection Analysis	
Class 4	Stresses in curved members	
Class 5	Deflection and stiffness considerations	CT 1,
Class 6	Column design; Statistical considerations	Final Exam
Week 3	Design parameters	
Class 7	Analysis with isotropic and anisotropic materials	
Class 8	Design for static strength; Fracture mechanics in design	
Class 9	Design for fatigue strength	
Week 4	Design parameters	
Class 10	Design of screws	
Class 11	Design of Fasteners and Connections	
Class 12	Design of keys and couplings	
Week 5	Design parameters	CT 2,
Class 13	Design of welded and brazed joints	Final Exam
Class 14	Design of Power screws and bolted connections	
Class 15	Design of welded and Riveted Connections	
Week 6	Design parameters	
Class 16	Design of belt and chain drives	
Class 17	Design analysis of Brakes and clutches	
Class 18	Design and strength of rope, belt and chain drives.	
Week 7	Design parameters	
Class 19	Design parameters of spring	
Class 20	Analysis of shock and vibration	
Class 21	Properties and design for damping and arresting of vibration	Mid Term,
Week 8	Bearings	Final Exam
Class 22	Analysis of friction	
Class 23	Design of Journal and ball bearing	
Class 24	Needle and Roller bearings	
Week 9	Gears and Gearing systems	
Class 25	Design of Spur and Helical gear	

Class 26	Design of worm and bevel gear	
Class 27	Toothed gearing, Gear trains.	
Week 10	Shaft and Tubes	
Class 28	Design of Marine Shafts	
Class 29	Design of stern tubes	
Class 30	Design of bearings associated with shafts and tubes	
Week 11	Lubrication	
Class 31	Lubrication of machine elements	Mid Term,
Class 32	Hydrostatic Lubrication	Final Exam
Class 33	Hydrodynamic lubrication	
Week 12	Fittings	
Class 34	Analysis of various types of fits	
Class 35	Close fit and loose fit	
Class 36	Design of various types of fits and strengths	
Week13	Design parameters	
Class 37	Design od belt and chain	
Class 38	Analysis of pulley, tension and strength	
Class 39	Design criteria of a cam, profile of a cam	CT 3,
Week 14	Revision	Final Exam
Class 40	Design of gears	
Class 41	Design of spring	
Class 42	Design of shafts	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment (40%)	Class Participation	5%		C6, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	ol Evom	60%	CO2	C1, C2,C4
Final Exam		0070	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Fundamentals of Machine Design Andrzej Golenko_
- 2. Theory of Machine R.S. Khurmi and J. K. Gupta.
- 3. Theory of Machine and Mechanisms Joseph E. Shigley, John Joseph Uicker
- 4. Standard Handbook of Machine Design Joseph E. Shigley, Charles R. Mischke, Thomas H.Brown
- 5. Design of Machine Elements Sharma, C.S.
- 6. Theory and Problems of Machine Design –Hall, Holowenco and Laughlin

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 315 Credit Hours: 3.00
Course Title: Ship Construction and Welding Technology Contact Hours: 3.00

Level and Term: Level 3 Term I

RE-REQUISITE

Course Code: NAME 107, NAME 207

Course Title: Introduction to Naval Architecture and Marine Engineering, Ship Design

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Ship construction and welding course based on construction procedure of a ship from start to finish to get quality product. All the latest classification society based international regulations and technological developments of standard welding procedure and fabrication of different structural arrangement are applied to the building procedure of a structure.

OBJECTIVES

- 1. To enable to identify, diagnose and rectify of common welding defects.
- 2. To enable to impart knowledge on how consistent weld quality is achieved in practice, through classification society rules, welding procedure specification and weld monitoring and control.
- 3. To make skillful to explain the main activities involve in ship construction.
- 4. Toenable to prepare a complete flow chart of ship construction process.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **States** common welding codes and standards in the welding industry, the quality of welds and welded fabrications and detailed inspection documentation and reports on findings including corrective actions.
- 2. **Interpret** standard construction procedure thorough knowledge of ship design.
- 3. **Evaluate** of welding for welding of different units and blocks of the ship.
- 4. **Apply** rules and regulations related to shipbuilding during construction of vessel.

COURSE CONTENTS

- 1. Introduction to Welding: Welding details: Different types of welding and their equipment.
- 2. **Welding Principle and Methods:** MMAW, GMAW, SAW, Electro slag welding, TIG and SS welding, MIG and aluminum welding.
- 3. **Welding Sequences and Defects:** Welding symbols, welding sequence in shipbuilding, Types of welding joints, Types of welding and defect, Common defects in ship welding distortion monitoring and control, inspection and testing of welded specimen.
- 4. **Nondestructive Testing (NDT) Methods and Techniques:** Difference Between Destructive and Non-Destructive Testing, Advantages of using NDT, Application of NDT, Major Six

- Methods: eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing.
- 5. **Details of Ship Structural Member:** Bottom structure, Keel, Single Bottom structure, Single Bottom structure, Double bottom Structure, Shell Plating, Framing, Tank side Bracket, Bilge keel, Bulkhead, Water tight doors, Deep Tank, Topside Tank, Pillars, Deck, Hatches, Bulwark, Superstructure and Deck house, Stem, Bulbous Bows, Chain Locker, Hawse pipe, Rudder, Shafting, Plate and section preparation, Frame Bending.
- 6. **Defects in Ship Structure:** structural discontinuity, stress concentration, remedial measures, Cathodic protection, surface preparation and painting.
- 7. **Shipyard Facilities:** various shops and production facilities and their layout, Process of ship construction, Numerical control.
- 8. Boat building by materials other than steel, conventional ship construction and block construction method.

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOM						MES	S (PO)			
110.			2	3	4	5	6	7	8	9	10	11	12
	States common welding codes and standards												
	in the welding industry, the quality of welds												
CO1	and welded fabrications and detailed												
	inspection documentation and reports on												
	findings including corrective actions.												
CO2	Interpret standard construction procedure				٦/								
CO2	thorough knowledge of ship design.				٧								
CO3	Apply rules and regulations related to							V					
003	shipbuilding during construction of vessel.							٧					
CO4	Evaluate of welding for welding of different												
C04	units and blocks of the ship.												٧

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	CP	CA	KP	Assessment
		Taxonomy				Methods
CO1	States common welding codes and	C1	1		1-4	CT, F, ASG
	standards in the welding industry, the					
	quality of welds and welded fabrications					
	and detailed inspection documentation					
	and reports on findings including					
	corrective actions.					
CO2	Interpret standard construction	C2	1		8	CT, MT, F
	procedure thorough knowledge of ship					
	design.					
CO3	Apply rules and regulations related to	C3	4		7	CT, F
	shipbuilding during construction of					
	vessel.					
CO4	Evaluate of welding for welding of	C5	2			MT, F

	different units and blocks of the ship.					
(C1 – R	(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;					
CP- Cor	CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q					
– Quiz,	– Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)					

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of science has to be applied to states welding codes and standards,
	welded fabrications and detailed inspection documentation and reports on findings
	including corrective actions.
CO2-PO4	Conduct investigations of complex problems using research-based knowledge to
	understand standard construction procedure thorough knowledge of ship design.
CO3-PO7	To understand and evaluate the sustainability and impact of professional engineering
	work, rules and regulations related to shipbuilding during construction of vessel are
	to be applied.
CO4-PO12	Ability to engage in independent and life-long learning in the broadest context of
	technological change for welding of different units and blocks of the ship.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Types of Welding	
Class 2	Different types of welding and their equipment. Welding principle	
Class 3	Methods of Welding	
Week 2	Different welding process	

Class 4	MMAW (Manual Metal Arc Welding), GMAW(Gas Metal Arc	
	Welding), SAW (Submerged Arc Welding)	CT 1,
Class 5	Electro slag welding, TIG and SS welding, MIG (Metal Inert Gas)	Final Exam
Class 6	Aluminum welding.	
Week 3	Types and symbol of weeding	
Class 7	Overview of welding	
Class 8	Types of welding joints.	
Class 9	Welding Symbols	
Week 4	Defect of Welding	
Class 10	Welding sequence in shipbuilding	
Class 11	Common defects in ship welding	
Class 12	Welding distortion monitoring and control	
Week 5	NDT	CT 2,
Class 13	Inspection and testing of welded specimen.	Final Exam
Class 14	Non-destructive type	
Class 15	Non-destructive testing Procedure, type, equipment and fault	
Week 6	NDT	
Class 16	Non-destructive equipment and fault	
Class 17	Overview of Welding joint and NDT	
Class 18	Structural discontinuity, stress concentration, remedial measures	
Week 7	Structural Assemble	
Class 19	Bottom structure, Keel	
Class 20	Single Bottom structure and Double bottom Structure	
Class 21	Shell Plating, Framing	Mid Term,
Week 8	Structural Assemble	Final Exam
Class 22	Tank side Bracket, Bilge keel	
Class 23	Bulkhead, Water tight doors, Deep Tank, Topside Tank	
Class 24		
Week 9	Structural Assemble	
Class 25	Pillars, Deck, Hatches,	
Class 26	Bulwark, Superstructure and Deck house, Stem	
Class 27		
Week 10	Structural Assemble	
Class 28	Bulbous Bows	
Class 29	Chain Locker, Hawse pipe	
Class 30	Rudder	
Week 11	Structural Assemble	
Class 31	Shafting	Mid Term,
Class 32	Overview of welding structure	Final Exam
Class 33	Shipyard Layout	
Week 12	Defects in Ship Structure	
Class 34	Structural discontinuity, stress concentration	
Class 35	Remedial measures, Cathodic protection	
Class 36	Surface preparation and painting	
Week13	Ship Construction	
Class 37	Process of ship construction, Conventional ship construction	
	, r	

Class 38	Block construction method	
Class 39	Boat building by materials other than steel	CT 3,
Week 14	Shipyard Facilities	Final Exam
Class 40	Frame Bending, Numerical control.	
Class 41	Various shops and production facilities and their layout Plate and section preparation	
Class 42	Launching	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2
Continuous	Assignment 1-3	2070	CO3	C3, C5
Assessment	Class	5%	CO1, CO2, CO3,	C1
(40%)	Participation	3%	CO4	CI
	Mid term	15%	CO2, CO4	C1, C2, C5
			CO1	C1, C2
Eine	al Exam	60%	CO2	C1, C2,C5
171116	ai Exaiii	0070	CO3	C2
			CO4	C3
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Practical ship design, D. G. M. Watson. Elsevier Ocean Engineering Book Series, Volume 1
- 2. Ship Construction, Fifth edition, D. J. Eyres
- 3. Merchant Ship Construction, D. A. Taylor

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 353
Credit Hours: 3.00
Course Title: Ship Resistance and Propulsion
Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REOUISITE

Course Code: NAME 107, NAME 157

Course Title: Introduction to Naval Architecture and Marine Engineering, Hydrostatics and Stability

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course discusses the selection and evaluation of commercial and naval ship power and propulsion systems. It provides the fundamental aspects as well as practical considerations for ship resistance and associated powering requirements, propeller design and engine selection.

OBJECTIVES

- 1. To demonstrate knowledge and understanding on components and estimation methods of the resistance of a ship or marine vehicle.
- 2. To familiarize the students with the principles of propeller design and figure out the delivered power of a ship or marine vehicle.
- 3. To induce the ability among students to analyse the powering requirements and to select engine for fulfilling service requirements of a ship or marine vehicle.
- 4. To be able to calculate cavitation related problems for propulsion systems.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Demonstrate** knowledge and understanding on components and estimation methods of the resistance of a ship or marine vehicle.
- 2. **Apply** the principles of propeller design in developing suitable propulsion system for a marine vehicle.
- 3. **Analyze** the powering requirements to select engine for fulfilling service requirements of a marine vehicle.
- 4. **Evaluate** cavitation related problems and minimization of it for propulsion systems.

COURSE CONTENTS

1. Theory of Resistance

- a. Resistance of a ship and its component, Towrope or effective power, Effective Horse Power.
- b. Dimensional Analysis of Ship Resistance, Total Resistance Coefficient. Wake, Eddy.
- c. Different Resistance at different part of Vessel. Definition of Powers and Efficiencies, Forces, velocities, powers and resistances at different locations of vessel
- d. Overall Concept for Powering a Vessel. Definitions of various power, Parts of estimates of power, Ship power estimate flowchart.
- e. Ship resistance determination with model test, Description of Towing Tank with different

- facilities required for a standard ship model testing facility, Ship model test Purposes.
- f. Laws of Comparison: Geometrical Similarity, Kinematic Similarity, Dynamic Similarity. Dynamic Similarity in case of Incompressible. Frictionless Fluid and No Free Fluid Surface.
- g. Froude experiment on friction, Work of towing tank conference on frictional resistance, three dimensional viscous resistance formulation, the work of ITTC on Three Dimensional Viscous Resistance Formulation.
- h. Calculation of resistance and effective power by three- dimension extrapolation procedure, Corresponding Speeds, Relation of Residuary Resistance with Displacement, Calculation of resistance and effective power by two-dimension extrapolation procedure
- i. Air & Wind Resistance Calculation, Shallow water effect, Shallow Water Effect with narrow channel effect.

2. Theory of Propulsion

- a. Types of modern propulsion systems and characteristics.
- b. Propeller Geometry, Manufacturing, Generator & Rake, Skew, Propeller Sections, face and back of the blade, face or geometrical pitch, Typical Blade Sections, the pitch angle, representative mean pitch, relation between pitch and pitch angle, velocity diagram of a section. Wake fraction, Thrust deduction factor.
- c. The Axial Momentum Theory of Propeller Action, The Momentum Theory including Angular Motion, Derivation of Blade Element Theory of Screw Propeller, Math on Blade Element Theory, Math on Momentum Theory
- d. Slip, Slip Angle, Real Slip Ratio, Slip ratio, PPR face, back, leading edge, trailing edge, angle of attack, Skew, Rake, Disk area, projected area, developed area, expanded area.
- e. Cavitation, Cavitation Number, Local Cavitation Number, Use of standard series data, Math on Cavitation.
- f. Open Water Characteristics, Propeller Hull Interaction (Wake gain, thrust deduction, relative rotative efficiency) Propulsive Efficiency and Propulsion Factor, Standard series and Wageningen B PPR series, , Math on Power & Efficiency
- g. Overview of main engine selection considerations, Introduction to ship power train components. Stern tubes, shafts, bearings, Propeller engine matching.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (POs)							3)				
140.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate knowledge and understanding on components and estimation methods of the resistance of a ship or marine vehicle.	1											
CO2	Apply the principles of propeller design in developing suitable propulsion system for a marine vehicle.			V									
CO3	Analyze the powering requirements to select engine for fulfilling service requirements of a marine vehicle.		√										
CO4	Evaluate cavitation related problems and minimization of it for propulsion systems												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Demonstrate knowledge and understanding on components and estimation methods of the resistance of a ship or marine vehicle.	C3	1		1-4	CT, F
CO2	Applythe principles of propellerdesignin developingsuitablepropulsion system for a marine vehicle.	С3	1		1-4	CT, MT, F
CO3	Analyze the powering requirements to select engine for fulfilling service requirements of a marine vehicle.	C4	3		5	CT/ASG, F
CO4	Evaluate cavitation related problems and minimization of it for propulsion systems	C5	2		1-4	MT, F

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to identify and calculate
COI-FOI	the frictional and residuary resistances of a marine vehicle.
CO2-PO3	In order to figure out the efficiency and effective design of the propulsion system for a
CO2-FO3	marine vehicle.
CO3-PO2	To analyze the power requirements for the selection of suitable engine in fulfilling
CO3-PO2	service requirements of a ship.
CO4-PO2	In order to evaluate cavitation related problems and minimization of it propulsion
	systems.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

 $Q-Quiz,\ ASG-Assignment,\ Pr-Presentation,\ R-Report,\ F-Final\ Exam,\ MT-Mid\ Term\ Exam)$

Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Components of Resistance & Total Resistance	
Class 1	Resistance of a ship and its component	
Class 2	Different Resistance at different part of Vessel, Dimensional	
	Analysis of Ship Resistance,	
Class 3	Total Resistance Coefficient.	CT 1,
Week 2	Concept of Powering of Vessel	Final Exam
Class 4	Wake, Eddy, Definition of Powers and Efficiencies,	
Class 5	Forces, velocities, powers and resistances at different locations of vessel	
Class 6	Overall Concept for Powering a Vessel	
Week 3	Determination of Resistance using Model test	
Class 7	Ship power estimate flowchart	
Class 8	Ship resistance determination with model test	
Class 9	Description of Towing Tank with different facilities required for a standard ship model testing facility, Ship model test Purposes.	
Week 4	Laws of Comparison	
Class 10	Laws of Comparison: Geometrical Similarity, Kinematic Similarity, Dynamic Similarity, Dynamic Similarity in case of Incompressible Frictionless Fluid and No Free Fluid Surface	CT 2
Class 11	Assessment 01	CT 2, Final Exam
Class 12	Froude experiment on friction, Work of towing tank conference on frictional resistance	Tillal Exalli
Week 5	Viscous Resistance Formulation	
Class 13	Three dimensional viscous resistance formulation	
Class 14	The work of ITTC on Three Dimensional Viscous Resistance Formulation	
Class 15	Calculation of resistance and effective power by three-dimension extrapolation procedure, Corresponding Speeds, Relation of Residuary Resistance with Displacement	
Week 6	Calculation of Resistance and Effective Power	
Class 16	Calculation of resistance and effective power by two-dimension	
~	extrapolation procedure	
Class 17	Air & Wind Resistance Calculation	
Class 18	Shallow water effect, Shallow Water Effect with narrow channel	
	effect	
Week 7	Propeller Geometry	
Class 19	Manufacturing, Generator & Rake, Skew, Propeller Sections, face	Mid Term,
	and back of the blade, face or geometrical pitch	Final Exam
Class 20	Typical Blade Sections, the pitch angle, representative mean pitch,	
	relation between pitch and pitch angle, velocity diagram of a section,	
Class 21	Assessment 02	
Week 8	Propeller related coefficients and characteristics	
Class 22	The slip, slip ratio. Wake fraction, Thrust deduction factor	
Class 23	Propeller face, back, leading edge, trailing edge, different pitch and	
	pitch angle, angle of attack, skew	

Class 24	Rake, Disk area, projected area, developed area, expanded area	
Week 9	Theory of Screw Propeller	
Class 25	The Axial Momentum Theory of Propeller Action	
Class 26	The Momentum Theory including Angular Motion	
Class 27	Derivation of Blade Element Theory of Screw Propeller	
Week 10	Propeller Hull Interaction	
Class 28	The analysis of wake, wake gain, thrust deduction, relative rotative	
	efficiency, Propulsive Efficiency and Propulsion Factor	
Class 29	Self-Propulsion Test	
Class 30	Mid-term exam	
Week 11	Propeller Design	
Class 31	Propeller Open Water Characteristics	
Class 32	Standard series and Wageningen B PPR series	
Class 33	Use of standard series data	
Week 12	Math related to Propeller Design Theories	
Class 34	Math on Blade Element Theory	
Class 35	Math on Momentum Theory	
Class 36	Math on Power & Efficiency.	CT 3,
Week13	Cavitation	Final Exam
Class 37	Cavitation: Outline of origin and effects	
Class 38	Preliminary Cavitation Criterion and choice of blade area ratio	
Class 39	Minimization of Cavitation	
Week 14	Main Engine Selection Considerations	
Class 40	Overview of main engine selection considerations, Introduction to ship	
	power train components. Stern tubes, shafts, bearings, Propeller engine	
C1 41	matching	
Class 41	Assessment	
Class 42	Course review	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	3%	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Fin	al Exam	60%	CO2	C1, C2,C4
171116	ai Exaiii	0070	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Ship Resistance and Propulsion by Anthony F Molland
- 2. Basic Ship Propulsion by J P Ghose
- 3. Marine Propellers and Propulsion by John Carlton

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 354 Credit Hours: 1.5
Course Title: Ship Resistance and Propulsion Lab Contact Hours: 3.0

Level and Term: Level 3 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Resistance and Propulsion Sessional course is designed to teach students how to calculate the different components of ship resistances. Students will be able to perform necessary calculations related to propulsion power and cavitation. It is expected that students can develop critical thinking behind propeller design features, able to check their effects using calculations and finally chose the appropriate feature.

OBJECTIVES

- 1. To enable students to be familiarized with resistance and power calculations of ships.
- 2. To familiarize the students with the design of screw propeller.
- 3. To enable students to compute wake of a ship.
- 4. To apply cavitation calculation on ship design.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Identify** the components of ship resistance.
- 2. Calculate the frictional and residual resistance.
- 3. **Perform** 2D and 3D extrapolation using ITTC methods.
- 4. **Identify** geometric parameters of a propeller.
- 5. Calculate cavitation and relevant characteristics.

COURSE CONTENTS

- 1. Calculation of residual resistance and frictional resistance
- 2. Calculation of wind resistance, Calculation of total resistance & effective power.
- 3. Propulsion & powering calculation.
- 4. Determination of the geometry of blade sections for B-series propeller and its design.
- 5. Calculation wake of a ship.
- 6. Resistance & power calculation of high speed planning hull using Savisky's method
- 7. Resistance & power calculation of high speed planning hull using Holtrop and Mennen's method.
- 8. Design of a screw propeller using circulation theory.
- 9. Calculation of 2D and 3D extrapolation using ITTC methods.
- 10. Calculation of cavitation.

No.	No. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)										
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Identify the components of ship	V											
COI	resistance	\ \											
CO2	Calculate the frictional and residual		V										
CO2	resistance.		•										
CO3	Perform 2D and 3D extrapolation using												
CO3	ITTC methods	ľ											
CO4	Identify geometric parameters of a		V										
004	propeller		٧										
CO5	Calculate cavitation and relevant	V											
003	characteristics	\ \											

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Identify the components of ship resistance	C1			1	R,Q
CO2	Calculate the frictional and residual resistance.	C3			1-4	R,Q
CO3	Perform 2D and 3D extrapolation using ITTC methods	C3			1-4	R,Q
CO4	Identify geometric parameters of a propeller	C1			1-4	R,Q
CO5	Calculate cavitation and relevant characteristics	C3			1-4	R,Q

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications			
CO1-PO1	Fundamental knowledge of resistance will help students to identify the components			
COI-FOI	of ship resistance.			
CO2-PO2 Students will formulate how to calculate the frictional and residual resistance.				
CO3-PO1	Students will acquire knowledge to perform 2D and 3D extrapolation using ITTC			
CO3-FO1	methods.			
CO4-PO2	Knowledge gained from this course will be used to identify geometric parameters of			
CO4-FO2	a propeller.			
CO5-PO1	Students will acquire knowledge to calculate cavitation and relevant characteristics.			

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Practice at CAD Lab	30
Self-Directed Learning	
Preparation of Assignment	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by co-operative and collaborative method, project based method

COURSE SCHEDULE

Week	Topic/Experiments
Week 1	Course introduction and basic concepts on ship resistance prediction methods
Week 2	Calculation of residual resistance and frictional resistance.
Week 3	Calculation of wind resistance, Calculation of total resistance & effective power
Week 4	Propulsion & powering calculation
Week	Resistance & power calculation of ship using Holtrop and Mennen's method
Week 6	Resistance & power calculation of high speed planning hull using Savisky's
	method
Week 7	Calculation of 2D and 3D extrapolation using ITTC methods,
Week 8	Mid Term Assessment (Quiz/ Viva)
Week 9	Calculation wake of a ship
Week 10	Calculation of cavitation
Week 11	Determination of the geometry of blade sections for B-series propeller
Week 12	Design of the geometry of blade sections for B-series propeller.
Week 13	To design screw propeller using circulation theory
Week 14	Final Assessment (Quiz/ Viva)

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components	Grading	COs	Bloom's Taxonomy
Class Attendance and Lab	10%	CO 1-CO 5	C1-C4
Participation	1070	CO 1-CO 3	C1-C4
Report Writing	50%	CO 1-CO 5	C1
Viva Voce	10%	CO 1- CO 5	C1
Lab Quiz	30%	CO 1	C1, C2

153

		CO 2	C3
		CO 3	C3, C4
		CO 4	C2, C3
		CO 5	C3
Total Marks	100%		

- 1. Principle of Naval Architecture: Volume-II- Resistance, Propulsion and Vibration
- 2. Ship Resistance and Propulsion by Anthony F Molland.
- 3. Basic Ship Propulsion by J P Ghose.
- 4. Marine Propellers and Propulsion by John Carlton

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code:NAME 363 Credit Hours: 3.00
Course Title: Numerical Methods Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Compulsory Theoretical Course based on different numerical methods applied to solve various problems in the fields of engineering.

OBJECTIVES

- 1. To explain the consequences of finite precision and the inherent limits of the numerical methods considered,
- 2. To select appropriate numerical methods to apply to various types of problems in engineering and science considering the mathematical operations involved accuracy requirements and available computational resources.
- 3. To enable to demonstrate understanding and implementation of the mathematical concepts and algorithms underlying the numerical methods considered.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the consequences of finite precision and the inherent limits of the numerical methods considered.
- 2. **Select** appropriate numerical methods to apply to various types of problems in engineering and science considering the mathematical operations involved, accuracy requirements and available computational resources.
- 3. **Demonstrate** understanding and **implementation** of the mathematical concepts and algorithms underlying the numerical methods considered.

COURSE CONTENTS

- 1. Introduction: Errors in Numerical Calculations, Vector and Matrix Objects,
- Solution of System of Linear and Nonlinear Equations: Gaussian Elimination with Backsubstitution, LU Decomposition, Tridiagonal and Band-Diagonal Systems of equations, Singular Value Decomposition, Sparse Linear Systems, Newton-Raphson Method for Nonlinear Systems of Equations, Globally Convergent Methods for Nonlinear Systems of Equations.
- 3. **Interpolation and Extrapolation:** Polynomial Interpolation and Extrapolation, Cubic Spline Interpolation, Rational Function Interpolation and Extrapolation, Interpolation on Scattered Data in Multi-dimensions, Laplace Interpolation.
- 4. **Integration of Functions:** Improper Integrals, Romberg Integration, Quadrature by Variable Transformation, Gaussian Quadratures and Orthogonal Polynomials, Multi-dimensional

- Integrals.
- 5. **Evaluation of Functions:** Polynomials and Rational Functions, Evaluation of Continued Fractions, Series and their Convergence, Recurrence Relations, Chebyshev Approximation, Polynomial Approximation from Chebyshev Coefficients, Pade Approximations, Evaluation of Functions by Path Integration.
- 6. **Sorting and Selection:** Straight Insertion, Shell's Method, Quicksort, Heapsort, Indexing and Ranking, Determination of Equivalence Classes.
- 7. **Root Finding:** Secant Method, Bisection, False Position Method, Ridder's Method, Newton-Raphson Method using Derivative, Roots of Polynomials.
- 8. **Minimization and Maximization of Functions:** Golden Section Search in One dimension, Downhill Simplex Method in Multi-Dimensions, Powell's Method, Conjugate Gradient Method, Quasi-Newton Method, Linear Programming: Simplex and Interior-Point Method, Simulated Annealing Methods, Dynamic Programming.
- 9. **Eigen Systems:** Jacobi Transformations of a Symmetric Matrix, Eigenvlaues and Eigenvectors of a Tridiagonal Matrix, Hermitian Matrices, QR algorithm for Real HessenbergMatrices,
- 10. **Least Squares, B-splines and Fast Fourier Transform:** Least-squares curve fitting, weighted Least-squares approximation, Method of Least-squares for Continuous Functions, Cubic B- splines, Fast Fourier Transform.
- 11. **Numerical solution of Ordinary differential equations:** Solution by Taylor's Series, Euler's Method, Runge Kutta Methods, Predictor-Corrector Methods, The Cubic Spline Method,
- 12. **Numerical solution of Partial differential equations:** Finite Difference Approximations to Derivatives, Laplace's Equation, Parabolic Equations, Iterative Methods for the Solution of Equations, Hyperbolic Equations.

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO							(PO)				
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the consequences of finite precision and the inherent limits of the numerical methods considered.	V											
CO2	Select appropriate numerical methods to apply to various types of problems in engineering and science considering the mathematical operations involved, accuracy requirements and available computational resources.	√											
CO3	Demonstrate understanding and implementation of the mathematical concepts and algorithms underlying the numerical methods considered.			√									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the consequences of finite precision and the inherent limits of the numerical methods considered.	С3	1		1-4	CT, F
CO2	Select appropriate numerical methods to apply to various types of problems in engineering and science considering the	C2	1		1-4	CT, Mid Term, F

	mathematical operations involved, accuracy requirements and available computational resources.				
CO3	Demonstrate understanding and implementation of the mathematical concepts and algorithms underlying the numerical methods considered.	C3	3	5	CT/ASG, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications				
CO1-PO1	The knowledge of mathematics and science has to be applied to calculate hydrostatic				
	parameters and develop the effects of draught change on them.				
CO2-PO1	In order to identify the role and extent of hydrostatic parameters on the principles of				
	intact and damage stability of ships.				
CO3-PO3	To analyze vessels' hydrostatic and hydrodynamic parameters for docking and				
	launching calculations.				

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Errors in Computations	
Class 1	Introduction	
Class 2	Errors in Numerical Calculations	

158

Class 3	Vector and Matrix Objects				
Week 2	Roots of equation-bracketing method				
Class 4	Gaussian Elimination with Back- substitution				
Class 5	LU Decomposition, Tridiagonal and Band-Diagonal Systems of CT 1				
	equations	Final Exam			
Class 6	Singular Value Decomposition, Sparse Linear Systems, Newton-				
	Raphson Method for Nonlinear Systems of Equations				
Week 3	Roots of equation-open method				
Class 7	Globally Convergent Methods for Nonlinear Systems of				
	Equations.				
Class 8	Polynomial Interpolation and Extrapolation				
Class 9	Cubic Spline Interpolation				
Week 4	Equilibrium conditions				
Class 10	Equilibrium conditions for floating body and submerged body				
Class 11	Assessment 01				
Class 12	Metacentric height, Transverse metacenter, Moment of inertia				
Week 5	Systems of linear algebra equation-open method	CT 2,			
Class 13	Rational Function Interpolation and Extrapolation, Interpolation on	Final Exam			
	Scattered Data in Multi-dimensions				
Class 14	Laplace Interpolation				
Class 15	Improper Integrals, Romberg Integration				
Week 6	Systems of linear algebra equation-iterative method				
Class 16	Quadrature by Variable Transformation				
Class 17	Gaussian Quadratures and Orthogonal Polynomials				
Class 18	Multi-dimensional Integrals.				
Week 7	Curve fitting				
Class 19	Polynomials and Rational Functions				
Class 20	Evaluation of Continued Fractions				
Class 21	Series and their Convergence, Recurrence Relations	Mid Term,			
Week 8	Interpolation	Final Exam			
Class 22	Chebyshev Approximation				
Class 23	Polynomial Approximation from Chebyshev Coefficients, Pade				
	Approximations				
Class 24	Evaluation of Functions by Path Integration.				
Week 9	Numerical Differentiation				
Class 25	Straight Insertion, Shell's Method, Quicksort				
Class 26	Heapsort, Indexing and Ranking				
Class 27	Determination of Equivalence Classes				
Week 10	Numerical Integration of equal segments				
Class 28	Secant Method, Bisection, False Position Method				
Class 29	Ridder's Method, Newton- Raphson Method using Derivative				
Class 30	Mid-term exam				
Week 11	Numerical integration of unequal segments				
Class 31	Roots of Polynomials	Mid Term,			
Class 32	Golden Section Search in One dimension	Final Exam			
Class 33	Downhill Simplex Method in Multi-Dimensions, Powell's Method	-			
	* /				

Week 12	Ordinary differential equation-Initial value problems					
Class 34	Conjugate Gradient Method, Quasi-Newton Method					
Class 35	Definition and development of weather criterion					
Class 36	Linear Programming: Simplex and Interior-Point Method, Simulated	7				
	Annealing Methods					
Week13	Ordinary differential equation-boundary value problems					
Class 37	Dynamic Programming length					
Class 38	Jacobi Transformations of a Symmetric Matrix, Eigenvlaues and					
	Eigenvectors of a Tridiagonal Matrix, Hermitian Matrices	CT 3,				
Class 39	QR algorithm for Real HessenbergMatrices,					
Week 14	Stiffness and multistep method	7				
Class 40	Least-squares curve fitting, weighted Least-squares approximation,					
	Method of Least-squares for Continuous Functions					
Class 41	Cubic B- splines, Fast Fourier Transform.					
Class 42	Solution by Taylor's Series, Euler's Method, Runge - Kutta Methods,					
	Predictor-Corrector Methods, The Cubic Spline Method					

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy		
	Class Test/	200/	CO1, CO2, CO3	C1, C2, C4		
Continuous	Assignment 1-3	20%	CO3	C3, C4		
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3,	C6, A2		
	Mid term	15%	CO2	C1, C2, C4		
			CO1	C1, C2		
Eine	ol Evom	60%	CO2	C1, C2,C4		
Final Exam		00%	CO3	C4		
			CO3	C4		
Tota	al Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Introductory Methods of Numerical Analysis, Sastry, S.S., 4th edition, Prentice Hall of India, 2006.
- 2. Numerical Recipes: The Art of Scientific Computing, Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 3rd edition, Cambridge University Press,2007.
- 3. Numerical Methods for Engineers, Chapra and Canale.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 400 Contact Hours: 12.0 (6.0 credit each term)

Course Title: Research Project/ Thesis Credit Hours: 6.0 (3.0 credit each term)

Level and Term: Level 4 Term 1 & 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is designed to form a basic understanding of research methodology that is what are the important components to look for while conducting a research, how to conduct a research and what to expect from the done work in the process. This course will expose the students to the promising career in various research fields and make them understand the importance of research methodologies in science and engineering.

OBJECTIVES

- 1. To identify and create the key components of a research proposal
- 2. To be able to demonstrate the ability to conduct literature reviews and gather the critical scientific information related to the research proposal
- 3. To develop the skills to objectively review and write a scientific critique of a colleague's proposal
- 4. To describe the important concepts related to engineering subjects in scientific research
- 5. To be aware of the underlying concepts and principles of scientific misconduct and plagiarism.
- 6. To be able to demonstrate writing skills by writing, a clear, concise Thesis Paper with scientifically defensible aims, methods and conclusions

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** quantitative, qualitative and mixed methods approaches to research;
- 2. **Identify** the components of a literature review process;
- 3. **Appraise** the reliability and validity of experiments;
- 4. Comprehend the ethical principles of research, ethical challenges and approval processes;
- 5. Use parametric and non-parametric hypothesis tests and write good thesis paper;
- 6. **Apply** writing skill of research report/ paper.

COURSE CONTENTS

- 1. **Foundations of Research:** Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Characteristics of scientific method Understanding the language of research Concept, Construct, Definition, Variable. Research Process.
- 2. **Problem Identification & Formulation** Research Question Investigation Question Measurement Issues Hypothesis Qualities of a good Hypothesis –Null Hypothesis &

- Alternative Hypothesis. Hypothesis Testing Logic & Importance.
- 3. **Research Design:** Concept and Importance in Research Features of a good research Design-Exploratory Research Design concept, types and uses, Descriptive Research Designs concept, types and uses. Experimental Design: Concept of Independent & Dependent variables.
- 4. **Qualitative and Quantitative Research:** Qualitative research Quantitative research Concept of measurement, causality, generalization, replication. Merging the two approaches.
- 5. Use of tools / techniques for Research and Interpretation of Data
- 6. **Report Writing** Layout of a Research Paper
- 7. Ethical issues related to publishing, Plagiarism and Self-Plagiarism.

No	No. COURSE OUTCOME		PROGRAM OUTCOMES (PO)										
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Describe quantitative, qualitative and mixed methods approaches to research	7											
CO2	Identify the components of a literature review process	e 🗸											
CO3	Appraise the reliability and validity of Experiments				√								
CO4	Comprehend the ethical principles of research, ethical challenges and approval processes								V				
CO5	Use parametric and non-parametric hypothesis tests and write good thesis paper									V			
	Apply writing skill of research report/paper.										$\sqrt{}$		

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe quantitative, qualitative and mixed methods approaches to research	C1	1		1-4	R,Pr
CO2	Identify the components of a literature review process	C1	3		1-4	R,Pr
CO3	Appraise the reliability and validity of experiments	C5	-	1	6	R,Pr
CO4	Comprehend the ethical principles of research, ethical challenges and approval processes	C1	1		7	R,Pr
CO5	Use parametric and non- parametric hypothesis tests and write good thesis paper		-	3	1	R,Pr
CO6	Apply writing skill of research report /paper.					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications				
CO1-PO1	In order to investigate and identify the key components of a research proposal.				
CO2-PO2	In order to describe the important concepts related to relevant engineering subjects in				
	scientific research				
CO3-PO4	In order to carry out well planned experiment and investigation using state of the art				
	experimental systems and assess the results.				
CO4-PO8	To be aware of the underlying concepts and principles of scientific misconduct and				
	plagiarism.				
CO5-PO9	To be able to demonstrate writing skills by writing, a clear, concise Thesis Paper with				
	scientifically defensible aims, methods and conclusions as a team				
CO6-PO10	To be able to demonstrate article producing capability through publications in				
	renowned conference/seminar/ journal.				

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	27
Consultation with Supervisor + Experiment/Quantitative Research Work	75
Self-Directed Learning	
Preparation of Research Proposal	6
Preparation of Progress Presentation	6
Preparation of Final Presentation	6
Formal Assessment	
Total (Each Term)	120

TEACHING METHODOLOGY

Lecture followed by consultation with respective supervisors, co-operative and collaborative method, project based method

COURSE SCHEDULE

Term – I						
Week 1	Foundations of Research: Meaning, Objectives, Motivation, Utility.					
	Concept of theory, empiricism, deductive and inductive theory.					
	Characteristics of scientific method – Understanding the language of					
	research – Concept, Construct,					
	Definition, Variable. Research Process. + Consultation with Supervisor					
Week 2	Problem Identification & Formulation – Research Question – Investigation					
	Question – Measurement Issues – Hypothesis – Qualities of a good					
	Hypothesis – Null Hypothesis & Alternative Hypothesis. Hypothesis Testing					
	– Logic &					
	Importance+ Consultation with Supervisor					
Week 3	Written Proposal					
Week 4	Proposal Presentation					
Week 5	Proposal Presentation					

Week 6	Research Design: Concept and Importance in Research – Features of a					
VV CCII O	good research design – Exploratory Research Design – concept, types					
	and uses +					
	Consultation with Supervisor					
Week 7	Descriptive Research Designs – concept, types and uses + Consultation with					
	Supervisor					
Week 8	Experimental Design: Concept of Independent & Dependent variables +					
	Consultation with Supervisor					
Week 9	Qualitative and Quantitative Research: Qualitative research – Quantitative					
	research – Concept of measurement, causality, generalization, replication.					
	Merging the two approaches + Consultation with Supervisor					
Week 10	Progress Presentation – I					
Week 11	Progress Presentation – I					
Week 12	Use of tools / techniques for Research and Interpretation of Data + Consultation					
	with Supervisor					
Week 13	Report Writing – Layout of a Research Paper + Consultation with Supervisor					
Week 14	Ethical issues related to publishing, Plagiarism and Self-Plagiarism +					
	Consultation with Supervisor					
Term – II						
Week 1	Consultation with Supervisor.					
Week 2	Consultation with Supervisor					
Week 3	Consultation with Supervisor + Preparation for Progress Presentation					
Week 4	Consultation with Supervisor + Preparation for Progress Presentation					
Week 5	Progress Presentation – II					
Week 6	Progress Presentation – II					
Week 7	Consultation with Supervisor					
Week 8	Consultation with Supervisor					
Week 9	Consultation with Supervisor					
Week 10	Consultation with Supervisor					
Week 11	Consultation with Supervisor + Preparation for Final Presentation					
Week 12	Consultation with Supervisor + Preparation for Final Presentation					
Week 13	Final Thesis Presentation					
Week 14	Final Thesis Presentation					

LINKAGE OF CO WITH ASSESSMENT METHODS AND THEIR WEIGHTS

Components	Grading	COs	Bloom's Taxonomy
		CO 1	C1, C3,A1
		CO 2	C4, C5, A1
Written Proposal and	10%	CO 3	C3, C4
Proposal		CO 4	C3
Presentation		CO 5	
		CO 6	
		CO 1	C1, C3,C4
		CO 2	C4, C5, P1
Progress Presentation	10%	CO 3	C3, C4
		CO 4	C3
		CO 5	

		CO 6	
		CO 1	CO 2
		CO 2	CO 3
Final Thesis Presentation and Final	40%	CO 3	C3, P6, P7
Thesis Report Submission		CO 4	C3
		CO 5	
		CO 6	
		CO 1	
		CO 2	
Continuous Assessment (Supervisor)	40%	CO 3	
		CO 4	
		CO 5	
		CO 6	
Total Marks	100%		-

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Research Methodology C.R.Kothari
- 2. Research design: Qualitative, quantitative and mixed methods approaches Creswell
- 3. Practical Research: Planning and Design Leedy

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 403 Credit Hours: 3.00
Course Title: Dynamics of Marine Vehicles Contact Hours: 3.00

Level and Term: Level 4 Term 1

PRE-REQUISITE

Course Code: NAME 213, NAME 253

Course Title: Fluid Mechanics, Marine Hydrodynamics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The course presents a unified approach to two seemingly different fields of Ship Theory; that is the manoeuvring and the seakeeping. Motion dynamics of a ship regarded as a rigid body in a general motion with six-degree-of-freedom is considered. The effects of non-linearities of the applied submodels on the physical phenomena associated with the ship behaviour are discussed

OBJECTIVES

- 1. To demonstrate knowledge and understanding of the underlying principle of linear wave theory and its induced motions and loads on a ship.
- To be able to apply techniques to predict the roll, pitch and heave motion of a vessel
 Travelling in regular waves and irregular waves and assess vessel motions against
 seakeeping criteria
- 3. To describe the concepts of dynamic stability, motion reduction devices, added resistance in waves and methods to predict the likelihood of seasickness.
- 4. To enable to predict and assess the manoeuvring behaviour of a vessel.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** the underlying principle of linear wave theory and it's induced motions and Loads on a ship.
- 2. **Demonstrate** the application of analytical methods for calculating ship motion in the regular and irregular seaways.
- 3. **Describe** the concepts of dynamic stability, motion reduction devices, added resistance in waves and methods to predict the likelihood of seasickness.
- 4. **Apply** techniques to predict and assess the manoeuvring behaviour of a vessel.

COURSE CONTENTS

- 1. Introduction to sea keeping.
- 2. Recapitulation of gravity waves, Wave record analysis, Rayleigh distribution, Gaussian distribution, Spectral representation of the seaway, Directional spectra.
- 3. Ship motion in regular waves-Response amplitude operators, Motions in irregular sea, Short-time and long-time statistics of waves.
- 4. Rigid body motion of a floating body in waves extended to several degrees of freedom and

- coupled motions.
- 5. Roll motions and coupled motions of floaters.
- 6. Slamming and deck wetness.
- 7. Introduction to manoeuvrability, Motion stability criterion, ITTC manoeuvring standards,
- 8. Design of control surface-Rudder design.

No	No. COURSE OUTCOME (CO) P 1 2 3		PROGRAM OUTCOMES (PO)								O)					
110.			4	5	6	7	8	9	10	11	12					
	Describe the underlying principle of															
CO1	linear wave theory and it's induced															
	motions and loads on a ship.															
	Demonstrate the application of															
CO2	analytical methods for calculating ship		1													
CO2	motion in the regular and irregular		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, v	`	,										
	seaways.															
	Describe the concepts of dynamic															
CO3	stability, motion reduction devices,	J														
CO3	added resistance in waves and methods	V														
	to predict the likelihood of seasickness.															
CO4	Apply techniques to predict and assess					V										
CO4	the manoeuvring behaviour of a vessel.					٧										

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the underlying principle of linear wave theory and it's induced motions and loads on a ship.	C1	1		1-4	CT, F
CO2	Demonstrate the application of analytical methods for calculating ship motion in the regular and irregular seaways.	C3	3		5	CT, MT, F
CO3	Describe the concepts of dynamic stability, motion reduction devices, added resistance in waves and methods to predict the likelihood of seasickness.	C1	3		1-4	CT/ASG, F
CO4	Apply techniques to predict and assess the manoeuvring behaviour of a vessel.	C3	1		5	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPING

Mapping	Justifications
	The knowledge of mathematics and science has to be applied to understand the
CO1-PO1	underlying principle of linear wave theory and it's induced motions and loads on a
	ship.
	In order to figure out motion response of marine vessels, analytical techniques to
CO2-PO2	predict roll, pitch and heave motion of a vessel travelling in regular and irregular
	waves have been used.
CO3-PO3	To describe the concepts of dynamic stability, motion reduction devices, added
CO3-FO3	resistance in waves and methods to predict the likelihood of seasickness.
CO4-PO5	In order to apply mathematical modeling techniques to assess the manoeuvring
CO4-FO3	behavior of a marine vessel.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment			
Week 1	Introduction				
Class 1	Introduction to Seakeeping				
Class 2	Introduction to Seakeeping				
Class 3	Sinusoidal Water Waves				
Week 2	Water Waves				
Class 4	Mathematical Foundation of the wave motion; Boundary conditions;	Final Exam			
	Solution for a monochromatic progressive wave				
	Progressive wave; sinusoidal wave; velocity, length and period of				
Class 5	waves				
Class 6	Math related to water wave problems				

Week 3	Water Waves	
Class 7	Effect of depth on water waves	
Class 8	Energy in waves	
Class 9	Path of particles in deep water and in canal of finite depth	
Week 4	Water Waves	
	A ship in waves	
Class 11	Assessment 01	
Class 12	Math related to ship in waves	
Week 5	Uncoupled Heave, Pitch and Roll Motion	
	Heaving Motion	
Class 14	Math related to Heaving Motion	CT 2, Final
	Pitching Motion	Exam
Week 6	Uncoupled Heave, Pitch and Roll Motion	
	Math related to Pitching Motion	
Class 17	Rolling Motion	
	Math related to Rolling Motion	
Week 7	Irregular Seaway	
	Classification of seas	
Class 20	Math related to Classification of seas	
Class 21	Assessment 02	
Week 8	Irregular Seaway	
Class 22	Irregularity of the seaway and the Histogram	Mid Term,
Class 23	Math related to Irregularity of seaway and histogram	Final Exam
Class 24	Wave Spectrum	
Week 9	Irregular Seaway	
	Math related to Wave Spectrum	
Class 26	Prediction of an Irregular Seaway; Standard Wave Spectrum	
	Math related to Prediction of Irregular Seaway	
Week 10	Ship Motion in Irregular Seaway	
	Response in an Irregular Seaway,	
	Math, Prediction of Motion in an Irregular Seaway	
	Mid Term Exam	
Week 11	Non-linear Motion	
	Dynamics Effects	
Class 32	Vertical Bow motion, Vertical Velocity, Vertical Acceleration	
C1 22	Relative Bow motion, Relative bow velocity, Relative Bow motion in	
	an irregular seaway	
Week 12	Deck Wetness & Slamming	CT 3, Final
Closs 24	Deck Wetness, Effect of static and dynamics swell up of water at the	Exam
Class 34	bow, probability of deck wetness	Exaill
Class 35	Slamming; Kinematic conditions to be investigated in study of slamming; probability of slamming	
Class 36	Motion of a V-shape wedge section	
Week 13		
vveek 13	Ship Manoeuvring Introduction to Maneuverability, Motion Stability Criterion, ITTC,	
Class 37	maneuvering standards	
Class 37	inancu vering stanuarus	

	Various kinds of motion stability, Mathematical Model for	
Class 38	Manoeuvring Motions,	
Class 39	Zigzag Manoeuvre, Analysis of Turning ability	
Week 14	Rudder Design	
Class 40	Design of control surface (rudder design)	
Class 41	Assessment 03	
Class 42	Review Class	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/		CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C6, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Fin	al Exam		CO2	C1, C2,C4
1.1116	ai Lain		CO3	C4
		60%	CO4	C4
Tota	al Marks	100%		

- 1. Dynamics of Marine Vehicles by R. Bhattacharyya.
- 2. Principles of Naval Architecture, Vol.3 Motions in Waves and Controllability.
- 3. Sea Loads on ship and offshore structure O.M. Faltinsen

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 409 Credit Hours: 3.0 Course Title: Marine Engineering -II Contact Hours: 3.0

Level and Term: Level 4 Term 1

PRE-REQUISITE

Course Code: NAME 177, NAME 277, NAME 309

Course Title: Thermal Engineering, Heat Transfer, Marine Engineering-I

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Compulsory Theoretical Course

Marine Engineering-II course is designed to teach students about the basic concepts of ships auxiliaries used in ship like Pump, Blower & Compressor, Refrigeration & Air conditioning System, Deck Fittings, Centrifuge, Lifesaving Apparatus and Firefighting equipment etc. Students will be able to select the suitable marine auxiliaries, Refrigeration & AC plant, and Lifesaving apparatus including firefighting appliances. It is expected that students will be able to analyze critically for the selection of correct auxiliary machinery and system for the designed ship. Students will also be able to analyze the defects of different systems while working as Marine engineer on board.

OBJECTIVE

- 1. To analyze the characteristics of all ship fitted auxiliary machineries;
- 2. To compare the characteristics of construction of different auxiliary machinery;
- 3. To evaluate different design parameters and performance to select auxiliary machineries;
- 4. To apply the knowledge of firefighting and lifesaving equipment;
- 5. To make decision about suitable auxiliary machineries for different vessel as a naval architect;

COURSE OUTCOMES (COS)

On successful completion of this course, students should be able to:

- 1. **Describe** the characteristics of all ship fitted auxiliary machineries
- 2. **Evaluate** different design parameters and performance to select auxiliary machineries
- 3. **Compare** the characteristics of construction of different auxiliary machinery
- 4. **Apply** the knowledge of firefighting and lifesaving equipment and to decide about suitable auxiliary machineries for different vessel as a naval architect

COURSE CONTENT

- 1. **Pumps:** Applications of pumps onboard, Types of pump, Characteristics of different pump, NPSH, Head calculation.
- 2. **Blowers and compressors:** Applications of compressors onboard, Single stage and multistage compressors, Compressor instability, safety etc.,
- 3. Refrigeration and air-conditioning: Thermodynamics, Principles, Load calculation,

- Construction details of different types of refrigeration and air-conditioning systems, Refrigerants and their characteristics, Maintenance and repair of units and plants.
- 4. **Deck fittings**: Windlasses, Capstan, Winches, Cranes, Cargo access equipment for dry, unitized, liquid and cryogenic cargoes.
- 5. **Steering gear Systems**: Various types of steering system, Characteristics of different steering system, Construction details.
- 6. **Stabilizer**: Types of stabilizer, Description of different stabilizer used in marine vessels.
- 7. **Pipe**: Pipe materials, Piping systems and valves, Steam traps, anchors, anchor hawse, chains, etc.
- 8. **Life Saving Apparatus**: Types of life saving apparatus, Operation and use of life saving apparatus.
- 9. **Fire Fighting arrangement**: Types of firefighting equipment, Location of installation, description of fixed firefighting equipment.

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO) 2 3 4 5 6 7 8 9 10 11 1										
110.	1		2	3	4	5	6	7	8	9	10	11	12
CO1	Describe the characteristics of all ship fitted												
COI	auxiliary machineries												
CO2	Evaluate different design parameters and												
CO2	performance to select auxiliary machineries												
CO3	Compare the characteristics of construction												
CO3	of different auxiliary machinery												
	Apply the knowledge of firefighting and												
CO4	lifesaving equipment and to decide about												
	suitable auxiliary machineries for different												
	vessel as a naval architect;												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the components and working aspects of different types of Internal Combustion engine and gas turbine	C1	1	1	1-4	CT, F
CO2	Evaluate the different types of special features of various types of marine engine and gas turbine	С3	1	1	1-4	CT/ASG, Mid Term, F
CO3	Explain the characteristics of different types of marine fuels	A3	3	3	5	CT/ASG, Mid Term, F
CO4	Describe the shafting system of a ship and the various components of shafting system Remember C2 – Understand C3 – Ar	A2	4	2	1-4	F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge is required to analyze the characteristics of all ship fitted auxiliary machineries;
CO2-PO2	The knowledge is required to compare the characteristics of construction of different auxiliary machinery;
CO3-PO1	To be able to to evaluate different design parameters and performance to select auxiliary machineries
CO4-PO6	Able to Apply the knowledge of firefighting and lifesaving equipment and to decide about suitable auxiliary machineries for different vessel as a naval architect

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction	
Class 2	Pumps: Types of pump	
Class 3	Pumps: Types of different pump	
Week 2	umps	
Class 4	Pumps: Characteristics of different pump	
Class 5	Pumps: Characteristics of different pump	CT 1,
Class 6	Pumps: NPSH	Final Exam
Week 3	Pumps and Compressors	

Class 7	Pumps: Head calculation						
Class 8	Pumps: Head calculation						
Class 9	Blowers and compressors						
Week 4	Blowers and compressors						
Class 10	Single stage and multistage compressors						
Class 11	Single stage and multistage compressors						
Class 12	Compressor instability, safety etc						
Week 5	Refrigeration and air-conditioning						
Class 13	Refrigeration and air-conditioning: Thermodynamics	Final Exam					
Class 14	Refrigeration and air-conditioning: Thermodynamics						
Class 15	Refrigeration and air-conditioning: Principles						
Week 6	Refrigeration and air-conditioning						
Class 16	Refrigeration and air-conditioning: Load calculation						
Class 17	Refrigeration and air-conditioning: Load calculation						
Class 18	Refrigeration and air-conditioning: Load calculation						
Week 7	Refrigeration and air-conditioning						
Class 19	Refrigeration and air-conditioning: Construction details of different types						
Class 17	of refrigeration and air-conditioning systems						
Class 20	Refrigeration and air-conditioning: Construction details of different types	Mid Term,					
Class 20	of refrigeration and air-conditioning systems	Final Exam					
Class 21	Assessment 02	T mar Emain					
Week 8	Refrigeration and air-conditioning						
Class 22	Refrigeration and air-conditioning: Refrigerants and their characteristics						
Class 23	Refrigeration and air-conditioning: Maintenance and repair of units and						
Class 25	plants.						
Class 24	Refrigeration and air-conditioning: Maintenance and repair of units and						
01435 2 .	plants.						
Week 9	Deck fittings						
Class 25	Deck fittings: Windlasses, Capstan, Winches						
Class 26	Deck fittings: Cranes						
Class 27	Deck fittings: Cargo access equipment for dry, unitized, liquid and						
	cryogenic cargoes.						
	1 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6						
Week 10	Steering gear						
Week 10 Class 28	Steering gear Steering gear: Systems						
Class 28	Steering gear: Systems						
Class 28 Class 29	Steering gear: Systems Steering gear: Types, Characteristics						
Class 28 Class 29 Class 30	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam	Mid Term,					
Class 28 Class 29 Class 30 Week 11	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer	Mid Term, Final Exam					
Class 28 Class 29 Class 30 Week 11 Class 31	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32 Class 33	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles Stabilizer: Description of Operation	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32 Class 33 Week 12	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles Stabilizer: Description of Operation Pipe Materials	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32 Class 33 Week 12 Class 34	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles Stabilizer: Description of Operation Pipe Materials Pipe: Pipe materials, Piping systems and valves, Steam traps,	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32 Class 33 Week 12 Class 34 Class 35	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles Stabilizer: Description of Operation Pipe Materials Pipe: Pipe materials, Piping systems and valves, Steam traps, Pipe: Piping systems	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32 Class 33 Week 12 Class 34 Class 35 Class 36	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles Stabilizer: Description of Operation Pipe Materials Pipe: Pipe materials, Piping systems and valves, Steam traps, Pipe: Piping systems Pipe: valves, Steam traps	1					
Class 28 Class 29 Class 30 Week 11 Class 31 Class 32 Class 33 Week 12 Class 34 Class 35	Steering gear: Systems Steering gear: Types, Characteristics Mid-term exam Steering gear and Stabilizer Steering gear: Construction details Stabilizer: Types and working Principles Stabilizer: Description of Operation Pipe Materials Pipe: Pipe materials, Piping systems and valves, Steam traps, Pipe: Piping systems	1					

Class 38	Life Saving Apparatus: Operation and use	
Class 39	Fire Fighting arrangement: Types of firefighting equipment	CT 3,
Week 14	Life Saving and Fire Fighting Equipment	Final Exam
Class 40	Fire Fighting arrangement: Location, Fixed firefighting equipment	
Class 41	Assessment	
Class 42	Course review	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C6, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	al Exam	60%	CO2	C1, C2,C4
FIII	ai exaiii	60%	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Marine Auxiliary Machinery- H.D Mc George
- 2. Marine Auxiliary Machinery and System M. Khetagurov
- 3. General Engineering Knowledge for Marine Engineers L. Jackson and T. D. Morton
- 4. Marine Auxiliary Machinery D.W. Smith
- 5. Introduction to Naval Engineering E. F. Gritzen
- 6. Introduction to Marine Engineering D. A. Taylor
- 7. Principles of Naval Engineering M. A. Carr

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 410 Credit Hours: 1.50
Course Title: Marine Engineering Lab -II Contact Hours: 3.00

Level and Term: Level 4 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Marine Engineering Sessional-II course is designed to teach students different kinds of marine engine & auxiliary components and preparing technical specifications of those components or machineries. Students will be able to perform necessary calculations related to machines and prepare technical specifications once the course is completed. It is expected that students will develop critical thinking about how to calculate various machinery parameters thus prepare technical specifications.

OBJECTIVES

- 1. To enable students to be familiarized with different types of machineries in application.
- 2. To familiarize the students with applied and calculative concept of marine machineries and devices.
- 3. To enable students to compute different parameters of ships and machines related to shipyard.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** about the different features of marine machineries.
- 2. **Identify** different specifications of a tender.
- 3. **Demonstrate** and **manipulate** the technical specifications of different machineries.

COURSE CONTENTS

- 1. Calculation of engine power and preparation of technical specification for designing a propulsion system for a specific vessel.
- 2. Selection and preparation of technical specification and selection of an air compressor for sand blasting purpose in a ship yard.
- 3. Study on CNC cutting and bending machine and preparation of technical specification to be used in a ship yard.
- 4. Calculations of the capacity of a pump required for a dry dock or floating dock and prepare its technical specification.
- 5. Calculation of the cooling load and preparation of technical specification of an air conditioning plant for a specific vessel.
- 6. Calculation of the cooling load and preparation of technical specification of a refrigeration plant for a specific vessel.
- 7. Preparation of technical specification, selection and design of steering system of a specific

vessel.

- 8. Preparation of technical specification, selection and design of storage unit of a fishing vessel.
- 9. Calculation of electric load and selection of diesel generator unit to be used for specific vessel and preparation of its technical specification
- 10. Preparation of technical specification and selection of engine analyzer unit to be used for specific vessel.
- 11. Preparation of comparative statement.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (COs)	PROGRAM OUTCOMES (PO)											
110.	COURSE OUTCOME (COS)		2	3	4	5	6	7	8	9	10	11	12
CO1	Explain about the different features of marine machineries		1										
CO2			1										
CO3	Demonstrate and manipulate the technical specifications of different machineries			1									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	CP	CA	KP	Assessment Methods
CO1	Explain about the different features of marine machineries	C2	1	1	1-4	R,Q,T
CO2	Identify different specifications of a tender	C1	1	2	1-4	R,Q,T
CO3	Demonstrate and manipulate the technical specifications of different machineries	C3	1	2	1-4	R,Q,T

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO2	Basic knowledge about different features and parameters of marine machineries
CO1-FO2	which will enable students to understand the specifications and characteristics.
CO2-PO2	Through understanding of various tender, terms & condition, code of conduct and
CO2-FO2	specifications for bidding tender.
CO3-PO3	Students will learn about technical specification, also how to calculate, manipulate
CO3-FO3	and demonstrate those.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement
Teaching and Leaf ining Activities	(hours)

Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method.

COURSE SCHEDULE

Week	TOPIC
Week 1	Course introduction
Week 2	Calculation of engine power and preparation of technical specification for designing
	a propulsion system for a specific vessel.
Week 3	Selection and preparation of technical specification and selection of an air
	compressor for sand blasting purpose in a ship yard.
Week 4	Study on CNC cutting and bending machine and preparation of technical
	specification to be used in a ship yard.
Week 5	Calculation of the capacity of a pump required for a dry dock or floating dock and
	prepare its technical specification.
Week 6	Calculation of the cooling load and preparation of technical specification pf an air
	conditioning plant for a specific vessel
Week 7	Mid Viva
Week 8	Calculation of the cooling load and preparation of technical specification pf a
	refrigeration plant for a specific vessel.
Week 9	Preparation of technical specification, selection and design of steering system of a
	specific vessel.
Week 10	Preparation of technical specification, selection and design of storage unit of a
	fishing vessel.
Week 11	Calculation of electric load and selection of diesel generator unit to be used for
	specific vessel and preparation of its technical specification
Week 12	Preparation of technical specification and selection of engine analyzer unit to be
	used for specific vessel.
Week 13	Preparation of comparative statement.
Week 14	Final Viva/ Quiz

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Comp	onents	Grading	CO	Blooms Taxonomy
	Lab		CO 1	C2
Continuous	participation	15%	CO 2	C1
Assessment	and Report		CO 3	C3
(40%)	Mid-quiz		CO 1	C2
(4070)	or	25%	CO 2	C1
	Mid Viva		CO 3	C3
Fina	l Viva	25%	CO 1	C2
Tilla	ı viva	23 /0	CO 2	C1
Fina	l Oniz	35%	CO 2	Ci
Tilla	Final Quiz		CO 3	C2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Marine Auxiliary Machinery- H.D Mc George
- 2. Marine Auxiliary Machinery and System M. Khetagurov
- 3. General Engineering Knowledge for Marine Engineers L. Jackson and T. D. Morton
- 4. Marine Auxiliary Machinery D.W. Smith
- 5. Introduction to Naval Engineering E. F. Gritzen
- 6. Introduction to Marine Engineering D. A. Taylor
- 7. Principles of Naval Engineering M. A. Carr

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 450
Course Title: Shipyard Practice/Industrial Training
Contact Hours: 1.50
Contact Hours: 4 Weeks

Level and Term: Level 4 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Compulsory sessional course based on practical industrial attachment.

OBJECTIVES

- 1. To enable the students to understand the overall management and operation of a shipyard/dockyard.
- 2. To enable the students to see the design and construction works of a ship practically in the ground level
- 3. To enable the students to understand the different parameters of shipbuilding i.e. materials, welding, painting, trial etc.
- 4. To enable the students to understand the launching, docking and undocking of a ship.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the overall management and operation of a shipyard/ dockyard.
- 2. **Identify** required skills for shipbuilding industries.
- 3. Use management tools to handle different categories of work forces.
- 4. **Manage** the crisis and resolve the conflicts amongst subordinates.
- 5. Carry out construction and repair works for a ship.

COURSE CONTENTS

- 1. Industry organogram, office admin of industry, flow of job responsibilities in industry etc.
- 2. Activities of various department/office in the shipyard
- 3. Ship construction procedures/methods, phases of construction
- 4. Various machineries and automation procedure in a shipyard/dockyard
- Attachment with various marine workshop/ institutes to see the practical work pattern and procedures.
- The schedule and detail contents will be fixed by the shipyard/industry according to their convenience.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (CO)	PROGRAM OUTCOMES (PO)											
110.	COURSE OUTCOME (CO)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the overall management and operation of a shipyard/ dockyard.												V
CO2	Identify required skills for shipbuilding industries	1											
CO3	Use management tools to handle different categories of work forces									1			
CO4	Manage the crisis and resolve the conflicts amongst subordinates									1			
CO5	Carry out construction and repair works for a ship			1									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME(CO)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the overall management and operation of a shipyard/ dockyard.	6	1		4-6	R,Q,T
CO2	Identify required skills for shipbuilding industries	4	1		6	R,Q,T
CO3	Use management tools to handle different categories of work forces	4	7		5-6	R,Q,T
CO4	Manage the crisis and resolve the conflicts amongst subordinates	4	7		5-6	R,Q,T
CO5	Carry out construction and repair works for a ship	6	1		4-6	R,Q,T

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	-
Experiment	-
Self-Directed Learning	
Preparation of Lab Reports	-
Preparation of Lab-test	-
Preparation of Quiz	-
Preparation of Presentation	-
Engagement in Group Projects	-
Formal Assessment	
Total	28 Days

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method

COURSE SCHEDULE

	Introduction and Overview of the Shipyard Industry organogram,
	Office admin of industry, flow of job responsibilities in industry etc.
Week-1	Design (Preliminary drawing, Production drawing)
	Plate classification, storage, shot blasting and priming, Plate bending,
	Cranes, Oxygen Plant, CNC cutting operation, CNC milling operation
	Welding types (Arc, Gas, TIG, MIG) and methods
	Keel Laying
W 1.0	Block preparation, framing and erection
Week-2	Sand Blasting and Painting
	Marine machineries and Pump
	Engine Room Construction and Engine Selection
	Water/ Air tightness test
	Piping system design and pipe bending
	Outfit installation
Week-3	Warehouse: setting up and operation
	Quality Control (Testing and Inspection)
	Docking/ undocking
	Hull repairing
	Launching
	Inclination test
Week-4	Sea trial
	Quiz Test and Viva Voce
	Closing

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Bloom's Taxonomy
			CO 1	C6
	Class participation		CO 2	C4
	Class participation and observation	10%	CO 3	A4
	and observation	CO4		A4
			CO 5 C6	C6
Continuous			CO 1	C6
Assessment			CO 2	C4
(40%)	Assignment	10%	CO 3	C6 C6
		CO4	CO4	A4
			CO 5	C6
	Viva Voce 20%		CO 1	C6
		20%	CO 2	C4
			CO 3	A4

		CO4	A4
		CO 5	C6
·		CO 1	C6
	60%	CO 2	C4
Repot and Presentation	(30% +	CO 3	A4
	30%)	CO4	A4
		CO 5	C6
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Dockyard Manual
- 2. Technology of ship repair Benkovsky, Galver

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 457
Course Title: Maritime Economics and Management
Contact Hours: 3.00
Course Title: Maritime Economics and Management

Level and Term: Level 4 Term 2

PRE-REQUISITE

Course Code: NAME 107, NAME 157, NAME 207

Course Title: Introduction to Naval Architecture and Marine Engineering, Hydrostatics and Stability,

Ship Design

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The maritime economics and management is a concept as well as application based theoretical course which is essential for all undergraduate students in the field of Naval Architecture & Marine Engineering. This course enhances the competency of students to work and make decision on ship design and financial estimation in shipyard, dockyard and maritime shipping industries after their graduation.

OBJECTIVES

- 1. Be able to impart knowledge on worldwide maritime shipping routes and shipping phenomena.
- 2. Achieving ability to apply decision tree in selection of size and type of vessels in procurement and design process of a fleet.
- 3. Be proficient to design cost effective ships as per owners' requirements.
- 4. Be able to develop new tools for ship design throughout the shipbuilding career.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Comprehend** the global shipping and maritime management.
- 2. **Analyse** consolidate and synthesize knowledge select shipping elements in the global logistics and maritime management domain.
- 3. **Apply** management tools in maritime shipping and related economic activities.
- 4. **Design** modern management tools for ship design and construction.

COURSE CONTENTS

- 1. Overview of global maritime domain and its system.
- 2. Blue economy and its components.
- 3. Understanding the maritime transportation management.
- 4. Elements of shipping; Freight market and operating economics; Chartering of ships.
- 5. Shipbuilding cost estimation; Maritime related tendering and contracts.
- 6. International payment systems and money flow mechanism.
- 7. Commercial, marketing, legal and financial aspects of shipbuilding and shipping.
- 8. Alternative maritime designs. Overall optimization for speed size combinations of ships.
- 9. Relative importance of technical and economic features of marine vehicle design, Importance

- and application of ICT in maritime designs.
- 10. Safety management concept in ships and ports and ISO certifications.
- 11. Management practices in maritime projects.
- 12. Goal based design, construction and repair/maintenance of marine vehicles.
- 13. Role of IACS, class surveyors and other maritime agencies.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES:

No. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES						CS (P	O)				
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Comprehend the global shipping and	V											
maritime management.													
	Analyse consolidate and synthesize knowledge												
CO2	select shipping elements in the global logistics												
	and maritime management domain.												
	Create and Apply appropriate management												
CO3	tools in maritime shipping and related												
	economic activities.												
CO4	Design modern management tools for ship						V						
CO4	design and construction.						~						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Comprehend the global shipping and maritime	C2	2	A1	1-4	CT, F
	management.					
CO2	Analyse consolidate and synthesize knowledge	C4	3	A1	1-5	CT, MT, F
	select shipping elements in the global logistics					
	and maritime management domain.					
CO3	Create and Apply appropriate management	C6	3	A2	5-7	CT/ASG, F
	tools in maritime shipping and related					
	economic activities.					
CO4	Design modern management tools for ship	A3	6	A2	5-7	MT, F
	design and construction.					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of science has to be applied to calculate global shipping trends,
	construction requirement of new vessels, renovation of middle aged vessels and
	costing in maritime management.
CO2-PO2	In order to identify the best ship of the best type for best route and subsequently
	carry out cost-benefit analysis based on shipping elements in the global logistics

	and maritime management domain.
CO3-PO5	Creating and applying appropriate management tools in maritime shipping and related economic activities, the optimization will be enhanced in terms of resource
	and time management in maritime transportation.
CO4-PO6	Designing the modern management tools for ship design and construction will guide shipping and shipbuilding industries to adapt and implement IMO, IACS and other international as well as local legislative issues.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction	
Class 2	General understanding of maritime transportation Management	
Class 3	General understanding of maritime transportation Management	
Week 2	Elements of shipping	
Class 4	Shipping basics	
Class 5	Blue economy and its components	CT 1,
Class 6	Shipping as a component of blue economy	Final Exam
Week 3	Maritime transportation management	
Class 7	Understanding the maritime transportation management	
Class 8	Freight market and operating economics	
Class 9	Chartering of ships	
Week 4	Shipping Management	
Class 10	Shipping management basics	
Class 11	Principles of shipping management	

Class 12	Bill of lading	
Week 5	Shipping Management	
Class 13	Shipping agency	
Class 14	Ship Chandler	
Class 15	Port duties	CT 2,
Week 6	Shipbuilding Economics and Finance	Final Exam
Class 16	Shipbuilding cost estimation	
Class 17	Selection of shipbuilding materials for cost effectiveness	
Class 18	Selection of onboard machinery for cost effectiveness	
Week 7	Shipbuilding Economics and Finance	
Class 19	Shipbuilding capital budgeting	
Class 20	Relation of shipbuilding capitals with ship operating costs	
Class 21	Decision tree of shipbuilding capital financing criteria	
Week 8	Shipbuilding Economics and Finance	
Class 22	Tools on capital investment	Mid Term,
Class 23	Use of modern tools and methods on investment assessment	Final Exam
Class 24	Self-financing vs credit financing optimization	
Week 9	Shipbuilding Economics and Finance	
Class 25	Cost benefit analysis for shipbuilding and shipping sector	
Class 26	Cost of propulsion	
Class 27	Cost vs size and speed of vessel	
Week 10	Shipbuilding Economics and Finance	
Class 28	Internal payment systems and transactions	
Class 29	LC procedure	
Class 30	SWIFT method	
Week 11	Shipbuilding Economics and Finance	
Class 31	Bank charges and financing challenges	Mid Term,
Class 32	Spread, float etc in maritime financing	Final Exam
Class 33	Working capital handing	
Week 12	Maritime Tender and Contracts	
Class 34	Tendering basics	
Class 35	Maritime specification and offers	
Class 36	Relation between tender participation and ship design	
Week13	Maritime Tender and Contracts	
Class 37	Elements of maritime contracts	
Class 38	Formats and execution of maritime contracts	
Class 39	Modes of delivery	CT 3,
Week 14	Revision	Final Exam
Class 40	Revision on shipping management	
Class 41	Revision on shipbuilding management	
Class 42	Open discussion	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components	Grading	COs	Blooms Taxonomy
------------	---------	-----	-----------------

	Class Test/	20%	CO1, CO2	C1, C2, C4				
Continuous	Assignment 1-3	2070	CO3	C3, C4				
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2				
(40%)	Participation	CO4		CO4		CO4		C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4				
			CO1	C1, C2				
Eine	ol Evom	60%	CO2	C1, C2,C4				
1.1116	Final Exam		Tillai Exalli 007		CO3	C4		
			CO4	C4				
Tota	al Marks	100%						

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Engineering Economics & Ship Design, I.L. Buxton, 3rd Edition, 1987, British Maritime Technology Ltd.
- 2. Cost Management in Shipbuilding Planning, Analyzing and Controlling Product Cost in the Maritime Industry, Jan O. Fischer, GerdHolbach, GKP Publishing.
- 3. Economics of Shipping Practice and Management Alan E. Branch
- 4. Liner Shipping Economics J.O. Jansson and D. Shneerson
- 5. Maritime Economics Martin Stopford
- 6. The Blackwell Companion to Maritime Economics Wayne K. Talley
- 7. Reeds 21st Century Ship Management J.K. Shim & J.G. Siegel
- 8. Elements of Shipping Alan E. Branch

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 459
Course Title: Marine Maintenance and Repair Engineering
Contact Hours: 3.00
Contact Hours: 3.00

Level and Term: Level 4 Term II

PRE-REQUISITE

Course Code: NAME 205, NAME 215, NAME 309 and NAME 409

Course Title: Shipbuilding Materials and Metallurgy, Ship Construction and Welding Technology,

Marine Engineering-I, Marine Engineering-II

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course aims to provide the knowledge of the shipbuilding and ship repair sector. In order to gain the essential skills and knowledge required, enabling to successfully run and manage the building and repair process the content of this course is essentially important. An array of challenging topics such as the docking process, specifications and docking incidents and accidents, ship repair special rules, contracts and project management is integral part of this course.

OBJECTIVES

- 1. To identify and rectify of different defects and damage of structure.
- 2. To impart knowledge on ship repair and maintenance technology with a view to perform shop floor work at ship building or ship repair industries.
- 3. To make skillful to explain quality product by providing quality and effective tools.
- 4. To enable to strike a balance between theoretical and practical skills.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **States** the various methods of corrosion and corrosion prevention.
- 2. **Apply** knowledge in machinery maintenance.
- 3. **Demonstrate** as a relevant engineer on board and their activities.
- 4. **Analyze** the aspects of welding, hull survey and paint scheme.

COURSE CONTENTS

- 1. Maintenance requirements: Corrosion, fatigue, Marine fouling.
- 2. Failure causes: Fatigue failure of structural members, deformation failures, Failure due to corrosion. Repairs to failures.
- 3. Measures for failure of structural members due to deformation, corrosion, fatigue, crack detection etc.
- 4. Prevention of marine growth and removal of marine growth both in dry and wet condition.
- 5. Design considerations with regard to maintenance. Welding repair decision model.
- 6. Classification requirements of hull survey, identification of defects, plates and welds. Plate cutting and welding, tolerance requirements, distortion removal.
- 7. Underwater welding: Dry and wet.
- 8. Welding inspection.

- 9. NDT tests to survey ship for repair
- 10. Impact of preventive maintenance and repair techniques on operation.
- 11. Maintenance Schedule. Machinery Maintenance (Marine Engine and Generator set): Top overhauling, Major overhauling

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	o. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)										
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	States the various methods of corrosion and	N											
COI	corrosion prevention.	V											
CO2	Apply knowledge in machinery maintenance.												
CO3	Demonstrate as a relevant engineer on board						2/						
003	and their activities.						V						
CO4	Analyse the aspects of welding, hull survey							V					
004	and paint scheme							\ \					

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	States the various methods of corrosion and corrosion prevention.	C1	1		1-4	CT, F, ASG
CO2	Apply knowledge in machinery maintenance.	C2	3		1-4	CT, MT, F
CO3	Demonstrate as a relevant engineer on board and their activities.	C3	6		7	CT, F
CO4	Analyse the aspects of welding, hull survey and paint scheme	C4	7		7	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of science has to be applied to states the various methods of
	corrosion and corrosion prevention.
CO2-PO2	Conduct investigations of complex problems using research-based knowledge to
	apply knowledge in machinery maintenance.
CO3-PO6	Contextual knowledge to assess health, safety and legal issues and the consequent
	responsibilities relevant to professional engineering practice and solutions to
	complex engineering problems to demonstrate as a relevent engineer on board and
	their activities.
CO4-PO7	Understand and evaluate the sustainability and impact of professional engineering
	work to analyse the aspects of welding, hull survey and paint scheme.

TEACHING METHODOLOGY

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Maintenance requirements – corrosion	
Class 2	Maintenance requirements – fatigue	
Class 3	Marine fouling	
Week 2	Fatigue, Crack and Corrosion	
Class 4	Failure causes	
Class 5	fatigue failure of structural members	CT 1,
Class 6	fatigue failure of structural members, Ship	Final Exam
Week 3	Fatigue, Crack and Corrosion	
Class 7	failure due to corrosion	
Class 8	Deformation failures	
Class 9	Repairs to failures	
Week 4	Structural Failure	
Class 10	Measures for failure of structural members due to deformation	
Class 11	Measures for failure of structural members due to corrosion	
Class 12	Measures for failure of structural members due to fatigue	
Week 5	Structural Failure	
Class 13	Measures for failure of structural members due to crack detection etc.	
Class 14	Measures for failure of structural members due to crack detection etc.	CT 2,
Class 15	Prevention of marine growth	Final Exam
Week 6	Prevention of Corrosion	
Class 16	Prevention of marine growth	
Class 17	Removal of marine growth	
Class 18	Removal of marine growth in dry condition	
Week 7	Prevention of Corrosion	

Class 19	Removal of marine growth in wet condition.	
Class 20	Removal of marine growth both in dry and wet condition.	
Class 21	Design considerations with regard to maintenance.	
Week 8	Prevention of Corrosion	
Class 22	Design considerations with regard to maintenance.	Mid Term,
Class 23	Maintenance scheduling.	Final Exam
Class 24	Maintenance scheduling.	
Week 9	Maintenance scheduling	
Class 25	Maintenance based on IACS 47	
Class 26	Maintenance based on IACS 47	
Class 27	Maintenance based on IACS 47	
Week 10	Maintenance scheduling	
Class 28	Welding repair decision model.	
Class 29	Welding repair decision model.	1
Class 30	Welding inspection and repair	
Week 11	Maintenance scheduling	
Class 31	Welding inspection and repair	Mid Term,
Class 32	Welding inspection and repair	Final Exam
Class 33	Classification requirements of hull survey	
Week 12	Structural Assemble	
Class 34	Classification requirements of hull survey	
Class 35	Identification of defects	
Class 36	Identification of defects	
Week13	Structural Assemble	
Class 37	Plates and welds.	
Class 38	In situ plate cutting and welding	
Class 39	Tolerance requirements	CT 3,
Week 14	Launching Procedure	Final Exam
Class 40	Distortion removal.	
Class 41	Underwater welding – dry and wet.	
Class 42	Impact of preventive maintenance and repair techniques on operation.	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO2, CO3	C1, C2
Continuous	Assignment 1-3	2070	CO4	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C1
(40%)	Participation	3 70	CO4	CI
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Fine	al Exam	60%	CO2	C1, C2,C4
Filiai Exalli		0070	CO3	C2
			CO4	C3
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Inspection, Repair and Maintenance of Ship Structures by Piero Caridis
- 2. Ship Construction, D.J. Eyres, 5th Edition 2001, Butterworth-Heinemann.
- 3. Commercial Ship Surveying, Harry Alexander
- 4. Technology of Ship Repairing, Benkovsky
- 5. Ship repair and maintenance handbook 2005 by Dieter Mergner

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 464 Credit Hours: 1.50
Course Title: Numerical Methods Lab Contact Hours: 3.00

Level and Term: Level 4 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Numerical Methods Sessional course is designed to teach students the basics of programming in general and programming MATLAB in particular using the knowledge gained in Numerical Methods theory course. Students will be able to solve programming problems & perform computation, apply numerical methods in problem solving and analyse ideas to solve problem. It is expected that students can develop critical thinking behind developing codes and able to check their calculations.

OBJECTIVES

- 1. To enable students to be familiarized and implement different programming concept in application.
- 2. To familiarize the students with applied and calculative concept of MATLAB.
- 3. To enable students to compute different parameters of ships using programming concept of MATLAB using numerical methods.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Solve** programming problems and **Perform** computations with the aid of MATLAB.
- 2. **Apply** numerical methods in problem solving and assignments.
- 3. Analyse and Contrast ideas to solve complicated problems.

COURSE CONTENTS

- 1. Introduction to MATLAB; Errors in Numerical Techniques: Calculation of Truncation Error in a Series, Approximation.
- 2. Solution of nonlinear equation by numerical method: method of false position.
- 3. Finding roots of a equation by Newton Raphson method.
- 4. Interpolating a table of data by Newton's forward and backward difference interpolation formula, Lagrange's Interpolation formula and Inverse Lagrange's Interpolation formula
- 5. Numerical differentiation for equidistant x by Newton's and Stirling's Interpolating Formulae
- 6. Numerical Integration Formulae (Trapezoidal and Simpson's 1/3 rule) for Equidistant x coordinates
- 7. An Application of Numerical Integration in Fourier Series
- 8. Solution of Simultaneous Equation of a Linear System by Gauss-Jordan (direct) Method
- 9. Solution of Simultaneous Equation of a Linear System by Gauss-Seidal (Iterative) Method
- 10. Fitting Linear and Nonlinear curves from experimental data by Least Square Method

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME			PROGRAM OUTCOMES (PO)									
140.	COURSE OUTCOME	1	1 2 3 4		5	6	7	8	9	10	11	12	
	Solve programming problems and												
CO1	Perform computations with the aid of												
	MATLAB												
CO2	Apply numerical methods in problem					2/	,						
CO2	solving and assignments					\ \							
CO3	Analyse and Contrast ideas to solve			1									
	complicated problems			\ \									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Solve programming problems and Perform computations with the aid of MATLAB	A5	1	1	1-4	R,Q,T
CO2	Apply numerical methods in problem solving and assignments	C3	1	2	6	R,Q,T
CO3	Analyse and Contrast ideas to solve complicated problems	C4	1	2	5	R,Q,T

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications						
CO1-PO2	Primary but practical idea about MATLAB, knowing programming problems and						
CO1-PO2	learn how to compute & solve those problems using MATLAB.						
CO2-PO5	Detail and critical discussion about numerical methods of programming and apply						
CO2-PO3	those for different problem solving, demonstration, calculation and assignments.						
CO3-PO3	Know about few complicated and exceptional problems, analyze those problems						
CO3-PO3	critically thus contrast ideas to solve the problems,						

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30

Total	120
Final Quiz	1
Continuous Assessment	10
Formal Assessment	
Engagement in Group Projects	20
Preparation of Presentation	5
Preparation of Quiz	9
Preparation of Lab-test	9
Preparation of Lab Reports	24
Self-Directed Learning	

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method, lab work.

COURSE SCHEDULE

Week	TOPIC
Week 1	Course introduction.
Week 2	Errors in Numerical Techniques: Calculation of Truncation Error in a Series
	Approximation.
Week 3	Solution of nonlinear equation by numerical method: method of false position.
Week 4	Finding roots of a equation by Newton Raphson method.
Week 5	Interpolating a table of data by Newton's forward and backward difference
	interpolation formula, Lagrange's Interpolation formula and Inverse Lagrange's
	Interpolation formula.
Week 6	Numerical differentiation for equidistant x by Newton's and Stirling's Interpolating
	Formulae.
Week 7	Mid Viva/lab test
Week 8	Numerical Integration Formulae (Trapezoidal and Simpson's 1/3 rule) for
	Equidistant x co-ordinates.
Week 9	An Application of Numerical Integration in Fourier Series.
Week 10	Solution of Simultaneous Equation of a Linear System by Gauss-Jordan (direct)
	Method.
Week 11	Solution of Simultaneous Equation of a Linear System by Gauss-Seidal (Iterative)
	Method.
Week 12	Fitting Linear and Nonlinear curves from experimental data by Least Square
	Method.
Week 13	Final Viva/lab test

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Comp	onents	Grading	CO	Blooms Taxonomy
Continuous	Lab		CO 1	A5
Assessment	participation	15%	CO 2	C3
(40%)	and Report		CO 3	C4

	Mid-quiz	-quiz CO 1		A5
	or	25%	CO 2	C3
	Mid Viva		CO 3	C4
Final Viva Final Quiz		25%	CO 1	A5
		2370	CO 2	C3
		35%	CO 2	CJ
		3370	CO 3	A5
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Numerical Recipes: The Art of Scientific Computing, Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 3rd edition, Cambridge University Press, 2007.
- 2. Numerical Methods for Engineers, Chapra and Canale.
- 3. Introductory Methods of Numerical Analysis, Sastry, S.S., 4th edition, Prentice Hall of India, 2006.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 490 Credit Hours: 1.0
Course Title: Bangladesh Studies for Naval Architect Contact Hours: 2.0

Level and Term: Level 4 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course has been designed to help the students in obtaining comprehensive idea about the history, culture and heritage of Bangladesh. It will introduce students with economy, society, politics, diplomacy and foreign policy of Bangladesh. Students will learn about the challenges and potentials of Bangladesh in shaping its peaceful and sustainable future. It will also assist the students in assessing roles and contribution of Bangladesh in the regional and international bodies which are dedicated to establish world peace.

OBJECTIVES

- 1. To introduce students with maritime and shipbuilding heritage of Bangladesh.
- 2. To provide in-depth knowledge on prospects and challenges in shipbuilding in Bangladesh.
- 3. To provide brief idea about inland waterways and sea route of Bangladesh.
- 4. To impart knowledge about different organisations related to ship design, building, recycling and different sea borne trade and commerce.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** maritime and shipbuilding heritage of Bangladesh.
- 2. **Evaluate** the prospects and challenges in shipbuilding in Bangladesh.
- 3. **Explain** about inland waterways and sea route of Bangladesh.
- 4. **Organize** different organisations related to ship design, building, recycling and different sea borne trade and commerce.

COURSE CONTENTS

- 1. Maritime and shipbuilding heritage of Bangladesh
- 2. Shipbuilding vise a vise nation building and civilization
- 3. Dimensions, prospects and challenges in shipbuilding in Bangladesh
- 4. Sea routes of Bangladesh
- 5. Inland waterways of Bangladesh
- 6. Organizations of Seafarers, Naval Architects, Marine Engineers, etc in Bangladesh
- 7. Notable personalities in maritime arena
- 8. Operation jackpot and preparations for national requirements in future.
- 9. Implication of maritime zone act

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No. COURSE OUTCOME (CO)]	PR()GI	RAN	ИΟ	UT	CO	ME	S (P	O)	
140.	COURSE OUTCOME (CO)		2	3	4	5	6	7	8	9	10	11	12
CO1	Describe maritime and shipbuilding												٦/
heritage of Bangladesh.													V
CO2	Evaluate the prospects and challenges in						V						
CO2	shipbuilding in Bangladesh.						\ \						
CO3	Explain about inland waterways and sea												1
003	route of Bangladesh.												V
	Organize different organisations related to												
CO4	ship design, building, recycling and												
	different sea borne trade and commerce												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (CO)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe maritime and shipbuilding heritage of Bangladesh.	C2, C5, C6				R,Q,Pr
CO2	Evaluate the prospects and challenges in shipbuilding in Bangladesh.	A4				R,Q,Pr
СОЗ	Explain about inland waterways and sea route of Bangladesh.	C1, C4, P1, A4			1-4	R,Q,Pr
CO4	Organize different organisations related to ship design, building, recycling and different sea borne trade and commerce	C1, C4, P1, A4			1-4	R,Q,Pr

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO12	In order to develop concept of historical and socio-economic aspects of Bangladesh.
CO2-PO6	To link up the customs and traditions of Bangladesh.
CO3-PO12	In order to assess the episodes and events those lead to the independence of our motherland.
CO4-PO10	In order to describe issues of national challenges and ways to overcome and thus contribute to national building program.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	16

Discussion	10
Self-Directed Learning	
Preparation of Presentation	16
Preparation of Viva	6
Preparation of Quiz	12
Total	60

TEACHING METHODOLOGY

Lecture followed by open discussion, presentation and report submission.

COURSE SCHEDULE

WEEK	TOPIC
Week 1	Maritime and shipbuilding heritage of Bangladesh
Week 2	Shipbuilding vise a vise nation building and civilization
Week 3	Presentation
Week 4	Dimensions, prospects and challenges in shipbuilding in Bangladesh
Week 5	Sea routes of Bangladesh and Inland waterways of Bangladesh
Week 6	Presentation
Week 7	Organizations of Seafarers, Naval Architects, Marine Engineers, etc in Bangladesh
Week 8	Notable personalities in maritime arena and their contributions to the nation.
Week 9	Presentation
Week 10	Operation jackpot and preparations for national requirements in future
Week 11	Implication of maritime zone act
Week 12	Presentation
Week 13	Final Viva
Week 14	Final Quiz

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

C	omponents	Grading	COs	Bloom's Taxonomy
			CO 1	C2, C5
	Participation and	20%	CO 2	A4
	Report	2070	CO 3	C1, C4
			CO 4	C1, C4
Continuous			CO 1	C2, C5
Assessment	Presentation	30%	CO 2	A4
			CO 3	C1, C4
			CO 4	C1, C4
	Case Study/ Viva	25%	CO 1, CO 2, CO 3	C2, C5, A4, C1
			CO 1	C2, C5
	I al Oak		CO 2	A4
Lab Quiz		25%	CO 3	C1, C4
			CO 4	C1, C4
Т	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Shipbuilding Industry of Bangladesh in the Light of Global Trend by Md. Ruhul Amin
- 2. Bengal Industries and the British Industrial Revolution (1757-1857) by Indrajit Ray
- 3. World Bank reports
- 1. Bangladesh Studies Shamsul Kabir Khan
- 2. Habits of Highly Effective People Stephen R Covey
- 3. India Wins Freedom Maulana Abul Kalam Azad
- 4. The History of Bengal Charles Stewart
- 5. A History of Bangladesh Willem van Schendel
- 6. History of Bangladesh: A Sub-continental Civilisation Abul Maal A. Muhith
- 7. Bangla bhasha o oitihasik bhasha andolan Mohammad Matiur Rahman
- 8. Breakup of Pakistan: Background & Prospects of Bangladesh Kabir Uddin Ahmed
- 9. Bangladesh: Quest for Freedom and Justice Kamal Hossain

ELECTIVE/OPTIONAL COURSES

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 375 Credit Hours: 3.00 Course Title: Composite Materials Contact Hours: 3.00

Level and Term: Level 3 Term I/II

PRE-REQUISITE

Course Code: NAME 201

Course Title: Mechanics of Structure

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This optional theoretical course will provide students a fundamental concept of modern composite materials which are being used in an ever-increasing range of applications and industries. Basic knowledge of composite materials will allow students to understand the issues associated with using these materials, as well as gain insight into how their usage differs from conventional materials such as metals, and ultimately be able to use composites to their fullest potential. At the end of the course students will develop critical thinking & skills needed for the design, manufacture and analysis of composite materials from a material scientist's viewpoint.

OBJECTIVES

- 1. To impart knowledge on characteristics, classifications and applications of composite materials.
- 2. To achieve ability to differentiate of micro-mechanics and macro-mechanics of composite materials.
- 3. To understand the composite structural analysis.
- 4. To calculate the laminate stress-strain, buckling, bending, deflection etc.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the types of composite materials and their characteristic features.
- 2. **Perform** calculation the elastic and strength properties of unidirectional laminates using micromechanics and macro-mechanics theory.
- 3. **Analyze** the most appropriate manufacturing process for fabricating composite materials.
- 4. **Evaluate** the fracture, fatigue, impact performance, the non-destructive inspection (NDT) and structural health monitoring of composite materials.

COURSE CONTENTS

1. Introduction to composite materials

- Basic concepts, characteristics, advantages and drawbacks of composites over monolithic materials
- b. Classifications, common types of fibers and matrices, mechanical properties
- c. Applications of composite material

d. Manufacturing methods and processes

2. Macromechanics analysis of lamina

- a. Review of definitions of stress, strain, elastic moduli
- b. Strain energy stress-strain relationships for different types of materials
- c. Stress-strain relationships for a unidirectional/bidirectional lamina
- d. The engineering constants of a unidirectional/bidirectional lamina in terms of the stiffness and compliance.

3. Elastic properties of the unidirectional lamina

- a. Engineering constants, Stress-strain relationship of a thin lamina
- b. Transformation of stress and strain and elastic constants
- c. typical elastic properties of a unidirectional lamina
- d. Relationship of Compliance and Stiffness Matrix
- e. Hooke's Law for a Two-Dimensional Angle Lamina.

4. Micromechanical analysis of a lamina

- a. Assumptions and limitations, Longitudinal strength and stiffness
- b. In-plane shear modulus and Poisson's ratio
- c. Concepts of volume and weight fraction of fiber and matrix, density and void fraction in composites
- d. Four elastic moduli, two coefficients of thermal expansion and two coefficients of moisture expansion of a unidirectional.

5. Analysis of laminated composites

- a. Basic assumptions, Strain-displacement relationship
- b. Laminate stiffness, Laminate strength, determination of lamina stress and strain
- c. Types of laminate configuration, Layered laminate
- d. In-plane stiffness of symmetric laminates
- e. Flexural stiffness of symmetric sandwich laminates
- f. Behaviour of general laminates.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No. COURSE OUTCOME (CO)		PROGRAM OUTCOMES (PO))		
110.	No. COURSE OUTCOME (CO)		2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the types of composite materials and their characteristic features.												
CO2	Perform calculation the elastic and strength properties of unidirectional laminates using micromechanics and macro-mechanics theory.												
CO3	Analyze the most appropriate manufacturing process for fabricating composite materials.		√										
CO4	Evaluate the fracture, fatigue, impact performance, the non-destructive inspection (NDT) and structural health monitoring of composite materials.			1									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the types of composite materials and their characteristic features.	C2	1		1-4	CT, F
CO2	Perform calculation the elastic and strength properties of unidirectional laminates using micromechanics and macro-mechanics theory.	A2	1		1-4	CT, Mid Term, F
CO3	Analyze the most appropriate manufacturing process for fabricating composite materials.	C4	3		1-4	CT/ASG, F
CO4	Evaluate the fracture, fatigue, impact performance, the non-destructive inspection (NDT) and structural health monitoring of composite materials.	C5	1		5	Mid Term, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications							
CO1-PO1	To apply the knowledge of science to explain the types of composite materials and their characteristic features.							
CO2-PO1	The knowledge of mathematics and science has to be applied to calculate the elastic and strength properties of unidirectional laminates using micromechanics and macromechanics theory.							
CO3-PO2	To analyze the most appropriate manufacturing process for fabricating composite materials.							
CO4-PO3	To design the composite material structures and analyzes them by different numerical techniques.							

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction to composites	
Class 1	Introduction, Background.	
Class 2	Characteristics, classifications and uses.	
Class 3	classifications and uses (Continue)	
Week 2	Introduction to composites (Continue)	
Class 4	Polymer Matrix Composites, Metal Matrix Composites	
Class 5	Ceramic Matrix Composites, Carbon–Carbon Composites	CT 1,
Class 6	Recycling Fiber-Reinforced Composites	Final Exam
Week 3	Introduction to composites (Continue)	
Class 7	Mechanics Terminology	
Class 8	Manufacturing processes	
Class 9	Applications and Problems	
Week 4	Macro-mechanical Analysis of a Lamina	
Class 10	Review of Definitions (Strain, Stress, Elastic Moduli, Strain Energy)	
Class 11	Assessment 01	
Class 12	Hooke's Law for Different Types of Materials.	
Week 5	Macro-mechanical Analysis of a Lamina (Continue)	
Class 13	Relationship of Compliance and Stiffness Matrix	
Class 14	Hooke's Law for a Two-Dimensional Angle Lamina	CT 2,
Class 15	Strength Failure Theories of an Angle Lamina	Final Exam
Week 6	Macro-mechanical Analysis of a Lamina (Continue)	I mai Exam
Class 16	Strength Failure Theories of an Angle Lamina(Continue)	
Class 17	Hygrothermal Stresses and Strains in a Lamina	
Class 18	Applications and Problems	
Week 7	Micro-mechanical Analysis of a Lamina	
Class 19	Volume and Mass Fractions, Density, and Void Content	
Class 20	Strength of Materials Approach	
Class 21	Assessment 02	
Week 8	Micromechanical Analysis of a Lamina (Continue)	
Class 22	Semi-Empirical Models	
Class 23	Elasticity Approach	
Class 24	Elastic Moduli of Lamina with Transversely Isotropic Fibers	
Week 9	Micromechanical Analysis of a Lamina (Continue)	
Class 25	Ultimate Strengths of a Unidirectional Lamina.	
Class 26	Coefficients of Thermal Expansion.	Mid Term,
Class 27	Coefficients of Moisture Expansion.	Final Exam
Week 10	Macromechanical Analysis of Laminates	
Class 28	Introduction	
Class 29	Stress–Strain Relations for a Laminate.	
Class 30	Mid-term exam	
Week 11	Macromechanical Analysis of Laminates (Continue)	_
Class 31	Stress-Strain Relations for a Laminate (Continue).	
Class 32	In-Plane and Flexural Modulus of a Laminate.	_
Class 33	Hygrothermal Effects in a Laminate	
Week 12	Failure, Analysis, and Design of Laminates	_
Class 34	Introduction	
Class 35	Special Cases of Laminates.	
Class 36	Failure Criterion for a Laminate.	CT 3,
Week 13	Failure, Analysis, and Design of Laminates (Continue)	Final Exam

Class 37	Design of a Laminated Composite
Class 38	Design of a Laminated Composite (Continue).
Class 39	Assessment 03
Week 14	Failure, Analysis, and Design of Laminates (Continue)
Class 40	Mechanical Design Issues
Class 41	Applications and Problems
Class 42	Course review

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	370	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	ol Evom	60%	CO2	C1, C2,C4
Final Exam		0070	CO3	C5, C4
			CO4	C5, C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Mechanics of Composite Materials Auter Kaw
- 2. Mechanics of Composite Materials R Jones
- 3. Principles of Composite Material Mechanics Ronald F Gibson
- 4. Mechanics of Composite Materials with MATLAB George Z. Voyiadjis & Peter I. Kattan
- 5. Composite Materials: Science and Engineering Krishan K. Chawla

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 387 Credit Hours: 3.0
Course Title: Port and Harbor Engineering Contact Hours: 3.0

Level and Term: Level 3 Term1

PRE-REQUISITE

Course Code: NAME 307

Course Title: Design of Special Ships

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Port and Harbor Engineering theoretical optional course aims to impart knowledge on port and harbour infrastructure, analyses how ports are organized, managed and planned and related with transport chain. Students specializing in this program must understand the significance and challenges related to ports and harbours.

OBJECTIVES

- 1. To ensure a thorough knowledge and understanding of port and harbour types, characteristics, planning and cargo handling.
- 2. To enable to find out design solution for various types of environmental and operational challenges.
- 3. To give an overview about ports of Bangladesh.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Analyze** and **evaluate** the types, design philosophy, design aspects and construction, of port and harbor.
- 2. **Explain** and **estimate** different types of environmental and operational loads encountered by port and harbor.
- 3. **Design** and **plan** to integrate port and harbour infrastructure.
- 4. **Demonstrate** the basic design of port and terminal layout.
- 5. **Apply** the knowledge in different port structure design which will help to select a suitable port in Bangladesh.

COURSE CONTENTS

- 1. **Introduction:** Introduction to Port and Harbor, Port and Harbor characteristics, Ship characteristics and tonnage calculation, Port and Harbor planning, Access channel, Wharf, Quay, Pier and Jetty
- 2. **Berthing and Mooring:** Structure, Requirement, Berthing Area and Anchorage area, Mooring, Mooring system layout, Anchor, The Rode System, The Mooring Buoy, Pennants, Dolphin Berthing environment and energy calculation, Fender selection and fender system design
- 3. Cargo Handling in ports (Container, Container Cranes, Bulk Cargo)
- 4. Natural Phenomenon and Loads: Wind, Wave, Tide, Current loads, Operational loads and

- other Environmental loads.
- 5. **Breakwater:** Concept on breakwater, Arrangement of breakwater, Design Process of breakwater, Types of breakwater, Wave Structure Interactions, Rubble mound breakwater, Vertical breakwater: types and construction, Floating breakwater: Classification of floating breakwaters and their details, Advantage and Disadvantage, Floating breakwater design
- 6. **Port Functions, Organisation and Planning Methodology:** Port Functions, Transport chain, Organisation of seaports, Types of planning, planning process, Planning tasks, functional requirements and planning elements, Layout development, evaluation techniques, Economic and financial analysis
- 7. **Port Terminals and Container Terminals: Planning and Design:** Terminal components, types of terminals, Terminal capacity: maximum or optimum, terminal dimensions, Container transport and terminal operations, Lay-out development of container terminals
- 8. **IMO** and Marine Pollution from Ships: UNCLOS, GESAMP, Sources of pollution, Existing IMO instrument, Management of ballast water: BWM, General Obligations Under the BWM Convention, BWM plan and standard
- 9. **Sea and River Ports of Bangladesh**: Chittagong Port Authority, Mongla Port Authority, Payra Port Authority: facilities, strength and weakness, River Ports of Bangladesh and their Assessment.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)											
140.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Analyze and Evaluate the types, design philosophy, design aspects and construction, of port and harbor.		√										
CO2	Explain and Estimate different types of environmental and operational loads encountered by port and harbor.							√					
CO3	Design and Plan to integrate port and harbour infrastructure.			1									
CO4	Demonstrate the basic design of port and terminal layout.		1										
CO5	Apply the knowledge in different port structure design which will help to select a suitable port in Bangladesh.						V						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Analyze and Evaluate the types, design philosophy, design aspects and construction, of port and harbor.	C4, C5			1-4	CT,F
CO2	Explain and Estimate different types of environmental and operational loads encountered by port and harbor.	C2	2		7	CT, F MT

CO3	Design and Plan to integrate port and	C6	1	3	Δ	MT, F	
003	harbour infrastructure.	C0	1	3	_	WII, I	
CO4	Demonstrate the basic design of port and	С3			1-4	F, ASG	
004	terminal layout.	CS			1-4	r, Asu	
CO5	Apply the knowledge in different port						
	structure design which will help to select a	C6		1	7	CT/ASG, F	
	suitable port in Bangladesh.						
(C1 -	(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;						
CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q							
– Qui	z, ASG – Assignment, Pr – Presentation, R –	Report, F – Fina	1 Exa	m, MT	- Mid	Term Exam)	

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO2	The learners will be able to analyze and evaluate the types, design philosophy, design
	aspects and construction, of port and harbor with substantiated conclusions using
	fundamental engineering principle of this course.
CO2-PO7	Considering the sustainability of port and harbor infrastructure design in point of view
	of environmental contexts, achieving ability to explain and estimate different types of
	environmental and operational loads encountered by port and harbor.
CO3-PO3	Student will achieve the ability to design and plan to integrate port and harbor
	infrastructure to give solution of specific needs with appropriate criteria.
CO4-PO2	Applying the literature knowledge on design of port and terminal layout., students will
	be able to demonstrate to actual design layout of port and terminal.
CO5-PO6	Students will be able to apply the knowledge in different port structure design which
	will help to select a suitable port in Bangladesh which is application of contextual
	knowledge to assess societal, safety and the consequent responsibilities relevant to
	professional engineering practice.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3

Total 120

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction to Port and Harbour course, Definition of Harbour and	-
	Port, Harbour components, Classifications of Port and Harbour	
Class 2	Port and Harbor characteristics, Differences between ports and	1
	Terminals, Review on Ship Characteristics: Displacement Tonnage,	
	standard Displacement Tonnage, Lightweight and Deadweight,	
	Deadweight Tonnage, Gross and Net Registered Tonnage	CT-1, Final
Class 3	Port and Harbor planning, Access channel, Wharf, Quay, Pier and Jetty	Exam
Week 2	Berthing and Mooring	
Class 4	Structure, Requirement, Berthing area and Anchorage area	
Class 5	Mooring and ship motion inside the port	
Class 6	Anchor, The Rode System, The Mooring Buoy, Pennants,	
Week 3	Berthing and Mooring (Contd.)	
Class 7	Mooring System Layout, Mediterranean Mooring of Ships	
Class 8	Dolphin and Case Study]
Class 9	Assessment -1 (CT-1)	
Week 4	Berthing and Mooring (Contd.)	
Class 10	Berthing environment and energy calculation	
Class 11	Fender selection and fender system design,]
Class 12	Fender accessories and other design criteria, Review on Berthing and	
	Mooring	
Week 5	Natural Phenomenon and Loads	CT-2, Mid
Class 13	Wind, Wave, Tide, Current loads	Term, Final
Class 14	Wind, Wave, Tide, Current loads	Exam
Class 15	Morison Equation to calculate wave and current load	
Week 6	Natural Phenomenon and Loads (Contd.)	
Class 16	Operational Load: Cargo load, pallet, container, Light Commercial or	
	Fishing vessel	
Class 17	Operational Load: Vehicular Load, Rail-mounted and Material	
	Handling equipment, Heavy load transporter in use at shipbuilding	
	yard, Port buildings and superstructure	
Class 18	Operational load: Port buildings and superstructure and Review	
Week 7	Breakwater	
Class 19	Concept on breakwater, Arrangement of breakwater, Design Process of	
CI OO	breakwater	
Class 20	Types of breakwater	
Class 21	Wave Structure Interactions	
Week 8	Breakwater (Contd.)	
Class 22	Structural design of rubble mound breakwater	Mid Tower
Class 23	Vertical breakwater: types and construction	Mid Term Evam Final
Class 24	Floating breakwater, Classification of floating breakwaters and their	L'Aaiii, Filial

	details, Floating breakwaters: Advantage and Disadvantage, Floating	Exam		
	breakwater design			
Week 9	Port Functions, Organisation and Methodology			
Class 25	Port Functions, Transport chain, Organisation of seaports			
Class 26	Types of planning, planning process			
Class 27	Planning tasks, functional requirements and planning elements			
Week 10	Port Functions, Organisation and Methodology (Contd.)			
Class 28	Layout development, evaluation techniques			
Class 29	Economic and financial analysis and general observations			
Class 30	Assessment 3 (Mid Term Exam)			
Week 11	Port Terminals and Container Terminals: Planning and Design			
Class 31	Terminal components, types of terminals			
Class 32	Terminal capacity: maximum or optimum, terminal dimensions			
Class 33	Container transport and terminal operations,	CT-3/		
Week 12	of the find and Container terminals. Haming and Design			
Class 34	Lay-out development of container terminals	Assignment,		
	IMO and Marine Pollution from Ships	Final Exam		
Class 35	UNCLOS, GESAMP, Sources of pollution, Existing IMO instrument			
Class 36	Management of ballast water: BWM, General Obligations Under the			
	BWM Convention, BWM plan and standard			
Week13	Sea and River Ports of Bangladesh			
Class 37	Chittagong Port Authority: Facilities, strength and weakness			
Class 38	Mongla Port Authority: Facilities, strength and weakness			
Class 30	Payra Port Authority: Facilities, strength and weakness			
Class 39	Assessment- 4 (CT-3/Assignment)			
Week 14	Sea and River Ports of Bangladesh (Contd.)			
Class 40	River Ports of Bangladesh and their Assessment			
Class 41	Review Class and Open Discussion			
Class 42	Review Class and Open Discussion			

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2	C2,C4,C5
Continuous	Assignment 1-3	20%	CO5	C6
Assessment	Class	5%	CO1- CO5	
(40%)	Participation	3 70	CO1- CO3	
	Mid term	15%	CO2, CO3	C2, C6, A2
			CO1	C4, C5, P1
			CO2	C2, C4
Fina	Final Exam		CO3	C6,A4
			CO4	C3, A3
			CO5	C6,
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Port Engineering by Zhou Liu & Hans F. Burcharth
- 2. Port Engineering: Planning, Construction, Maintenance, and Security by G. P. Tsinker
- 3. Ports and Terminals, Prof. I. H. Ligteringen, September 2000, Delft University of Technology.
- 4. Design and Construction of Ports and Marine Structures, A. D. Quinn, McGraw-Hill Book Company Ltd.
- 5. Port Management, Hercules
- 6. Dock and Harbour Engineering, Ozha & Ozha, 1 st Edition, Charotar Books, Anand., 1990

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 371

Course Title: Finite Element Method for Ship Structure

Contact Hours: 3.00

Contact Hours: 3.00

Level and Term: Level 3, Term 1/2

PRE-REQUISITE

Course Code: NAME 201, NAME 301

Course Title: Mechanics of Structure, Ship Structure

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This optional theoretical course is intended to provide students with the necessary fundamental knowledge about the implementation of Finite Element Method for Engineering Analysis. The students should be able to Understand the fundamentals of Finite Element Method and stiffness method to solve engineering problems. Furthermore, after successful completion of this course students will develop skills to solve ship structure problems using finite element analysis.

OBJECTIVES

- 1. To acquire knowledge about the fundamentals of finite element analysis.
- 2. To be proficient in finite element formulations of ship structural problems.
- 3. Be aware of limitations of finite elements and source of errors both in modeling and computation.
- 4. Be able to solve ship structure problems using finite element methods.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Comprehend** the fundamentals of finite element analysis and finite element formulations.
- 2. **Solve** ship structure problems using finite element analysis.
- 3. **Interpret** results obtained from a finite element analysis.

COURSE CONTENTS

- 1. **Introduction:** Introduction to Finite Element Method, Elements and Nodes, Problem modeling using FEM and result checking, discretization and other approximations, responsibility of the user, Elementary matrix algebra.
- 2. **Bar and Beams. Linear Static Analysis:** Introduction, Stiffness Matrix Formulation: Bar Element, Stiffness Matrix Formulation: Beam element, Properties of **k** and **K**. Avoiding Singularity, Mechanical Loads, Thermal Loads, An Application.
- 3. **Plane Problems:** Introduction, Constant Strain Triangle (CST), Linear Strain Triangle (LST), Bilinear Quadrilateral (Q4), Quadratic Quadrilateral (Q8), Improved Bilinear Quadrilateral (Q6), Elements with "Drilling" d.o.f., Elements of More General Shape, Loads, Stress Calculation, Application examples
- 4. **Two-Dimensional Isoparametric Elements and Solution Techniques:** Node Numbering and Matrix Sparsity, Equation Solving, Transformations, Isoperimetric Elements: Formulation,

- 5. **Numerical Integration:** Gauss Quadrature and Isoparametric Elements, Choice of Quadrature Rule. Instabilities, Stress Calculation and Gauss Points, Nature of Finite Element Solution, Convergence Requirements. Patch Test, Infinite Media and Infinite Elements, Substructures, Symmetry, Constraints, Examples
- 6. Modeling, Errors, and Accuracy in Linear Analysis: Modeling in General, Structure Behavior and Element Behavior, Element Tests and Element Shapes, Test Cases and Pilot Studies, Material Properties, Loads, Connections, Boundary Conditions, Planning the Analysis, Numerical Error: Sources and Detection, Common Mistakes, Checking the Model, Critique of FE Results, Stress Concentrations. Sub-modeling, Convergence with Mesh Refinement, Error Measures and Adaptivity
- 7. **Plate and Shells:** Assumption and application of thin and thick plate theories, Finite elements for plates: Kirchhoff and R-M plate elements and related DoF, Finite Element for shells and DoF.
- 8. **Finite Element Idealization of Ship Structures:** Beam element idealization of ships' primary structural members, Hybrid modelling approach of ship structures using bar, beam and shell finite elements.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES:

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)										
110.	COURSE OUTCOMES (COs)				4	5	6	7	8	9	10	11	12
	Comprehend the fundamentals of finite												
CO1	element analysis and finite element												
	formulations.												
CO2	Solve ship structure problems using finite					٦/							
CO2	element analysis.					V							
CO3	Interpret results obtained from a finite				٦/								
COS	element analysis.				>								

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Comprehend the fundamentals of finite element analysis and finite element formulations.	C2	1		1-4	CT, F
CO2	Solve ship structure problems using finite element analysis.	C3	3		6	CT, MT, F
СОЗ	Interpret results obtained from a finite element analysis.	C5	1		5	CT/ASG, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics, science and engineering fundamentals has to be
COI-FOI	applied to understand the fundamentals of finite element analysis.

CO2-PO5	Appropriate finite elements shall be used to model the physical behaviour of the						
structure using software in order to obtain an approximate solution.							
CO3-PO4	Results obtained from finite element analysis shall be critically examined and						
CO3-PO4	verified.						

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction, course administration, motivation lecture	
Class 2	Introduction to the Finite Element Method (FEM), stress-strain curve	
	of steel, Hooke's law; Poisson's ratio.	
Class 3	Assumptions for a linear-elastic finite element analysis, FEM	
	formulation, Equilibrium, Compatibility and Material Law, Rigid body	
	motion in 1D, 2D and 3D space and its significance.	CT 1,
Week 2	Elementary matrix algebra	Final Exam
Class 4	Vector & Matrix, Matrix addition, multiplication and its significance,	
	inversion of [2 x 2], [3 x 3] and [4 x 4] matrices,	
Class 5	Gaussian elimination, singular matrix, Eigen value & Eigen vector of a	
	matrix.	
Class 6	Element, node and DOF, DoF of 1D Bar and 2D beam elements.	
Week 3	1D Bar Element	
Class 7	Stiffness matrix formulation of a 1D bar, Applications and Limitations	
Class 8	Problem solving using 1D bar element	
Class 9	Class Test-1	
Week 4	2D Beam Element	
Class 10	Stiffness matrix formulation of a 2D beam element	

F=	T	
Class 11	Applications and Limitations of a 2D beam element	
Class 12	Problem solving using 2D beam element	
Week 5	Plane Stress Element	
Class 13	Plane problems, plane stress and plain strain element	
Class 14	CST element, strain-displacement matrix	CT 2,
Class 15	LST element, strain-displacement matrix	Final Exam
Week 6	Plane Stress Element	_
Class 16	Q4 element, strain-displacement matrix	_
Class 17	Q8 element, strain-displacement matrix	_
Class 18	Class Test -2	
Week 7	Plane Stress Element	
Class 19	Q6 element, shear locking and remedy	
Class 20	Loads and Boundary Conditions (BC) in plane problems	
Class 21	Mid Term Exam	
Week 8	Software Application	
Class 22	Guidance on uses of finite element software	Mid Term,
Class 23	Software application for solving 2D beam problem	Final Exam
Class 24	Software application for solving 2D plane stress problem.	
Week 9	Isoparametric Elements and Solution Techniques	
Class 25	Isoparametric Elements: Formulation	
Class 26	Jacobian and stiffness matrix of isoparemetric elements,	
Class 27	Problems on coordinate and displacement interpolations of	
	isoperimetric elements	
Week 10	Numerical Integration	
Class 28	Gauss Quadrature and Isoparametric Elements	
Class 29	Stress Calculation and Gauss Points	
Class 30	Nature of FE solutions, Convergence requirements	
Week 11	Modeling, Errors, and Accuracy in Linear Analysis	Mid Term,
Class 31	Sources of errors in FEA, common mistakes in FEA, A case study on	Final Exam
	errors in FEA	
Class 32	Element tests (Patch test) and their shapes, Numerical errors: ILL-	
	conditioning.	
Class 33	Means to improve FE solutions.	
Week 12	Plate and Shells	
Class 34	Assumption and application of thin and thick plate theories	
Class 35	Finite elements for plates: Kirchhoff and R-M plate elements and	
	related DoF	
Class 36	Finite Element for shells and DoF	
Week13	Finite Element Idealization of Ship Structures	
Class 37	Substructures, symmetry, anti-symmetry and constraints]
Class 38	Beam element idealization of ships' primary structural members]
Class 39	Hybrid modeling approach of ship structures using finite elements	CT 3,
Week 14	Course Review	Final Exam
Class 40	Class Test-3]
Class 41	•	
Class 41	Course review	
Class 41 Class 42	Course review Course review	_

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6 A2
(40%)	Participation	3%	CO4	C6, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
	Final Exam		CO1	C1, C2
Ein			CO2	C1, C2,C4
LIII	ai Exaiii	60%	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Finite Element Modelling for Stress Analysis by Robert D. Cook
- 2. Fundamentals Finite Element Analysis by David Huttons.
- 3. The Finite Element Method It's Basis & Fundamentals by O.C. Zienkiewicz, R.L. Taylor & J.Z. Zhu
- 4. Finite Element Procedures by Klaus-Jürgen Bathe

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 373

Course Title: Computational Fluid Dynamics

Contact Hours: 3.00

Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

Course Code: NAME 213, NAME 253

Course Title: Fluid Mechanics, Marine Hydrodynamics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course introduces the beginning graduate and advanced undergraduate students to finite difference methods as a means of solving different type of differential equations that arise in fluid dynamics. Fundamentals of numerical analysis, ordinary differential equations and partial differential equations related to fluid mechanics and heat transfer will be reviewed. Error control and stability considerations are discussed and demonstrated. The Navier-Stokes equations will be solved using a commercial software.

OBJECTIVES

- To demonstrate knowledge and understanding on flow computations using current best practices for numerical model and method selection and assessment of the quality of results obtained.
- 2. To familiarize the students with the physically justified assumptions to simplify and carry out feasible analysis of real-life fluid flow and heat transfer problems.
- 3. To induce the ability among students to use powerful computational tools to analyse fluid dynamics and heat transfer related problems.
- 4. To be able to simulate the resistance and propulsion related flow phenomena in the field of ship hydrodynamics.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Comprehend** different flow computations using current best practices for numerical model and method selection and assessment of the quality of results obtained.
- 2. **Make** physically justified assumptions to simplify and carry out feasible analysis of real-life fluid flow and heat transfer problems.
- 3. Use powerful computational tools to analyse fluid dynamics and heat transfer related problems.
- 4. **Apply** these methods and tools to simulate the resistance and propulsion related flow phenomena in the field of ship hydrodynamics.

COURSE CONTENT

1. <u>Governing equations of fluid flow:</u> Finite Control Volume, Substantial Derivative, Physical meaning of gradient of velocity, Conservation and non-conservation form of continuity equation, Conservation and non-conservation form of Navier-Stokes equation, Energy equation.

- 2. <u>Boundary integral methods:</u> Discretisation and Interpolation, Boundary Element Method, Green's theorem, Application of Boundary Integral Method to radiation and diffraction problems,
- 3. <u>Discretization schemes:</u> finite difference methods, finite volume methods, finite element methods, spectral methods etc.
- 4. <u>Finite Volume Method:</u> Diffusion problem, Convection Diffusion problem, Discretization Schemes, Pressure Velocity coupling, Solution of Discretized Equations, Unsteady flows, Implementation of Boundary Conditions, Errors and Uncertainty in CFD modeling.
- 5. <u>Turbulence modeling:</u> Characteristics of turbulent flow, Transition from laminar to turbulent flow, Reynolds Averaged Navier Stokes Equation (RANS), Turbulence Models, i.e., k-epsilon model, k-omega model, Spalart Almaras model, LES, DES, DNS etc.
- 6. <u>Grid generation:</u> Body-fitted coordinate grids for complex geometries, Cartesian vs curvilinear grids, Block-structured grids, Unstructured grids, Discretization in unstructured grids, Staggered vs co-located grid arrangements.
- 7. **Free surface flow:** free surface computation with linear and fully nonlinear boundary conditions, Numerical treatment of fluid-body interface, CFD application to free surface flow past ship shape objects using Reynolds Averaged Navier Stokes Equation (RANS).
- 8. <u>Errors and Uncertainty in CFD modelling:</u> Errors and Uncertainty in CFD, Numerical Errors, Input Uncertainty, Physical Model Uncertainty, Verification and Validation.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO))						
140.	No. COURSE OUTCOMES (COs)		2	3	4	5	6	7	8	9	10	11	12
CO1	Comprehend different flow computations using current best practices for numerical												
COI	model and method selection and assessment of the quality of results obtained	V											
CO2	Make physically justified assumptions to simplify and carry out feasible analysis of real- life fluid flow and heat transfer problems.		1										
CO3	Use powerful computational tools to analyse fluid dynamics and heat transfer related problems.					1							
CO4	Apply these methods and tools to simulate the resistance and propulsion related flow phenomena in the field of ship hydrodynamics												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Comprehenddifferentflowcomputationsusingcurrentbestpracticesfornumericalmodelandmethodselectionand assessmentof thequalityof resultsobtained	C3	1		1-4	CT, F
CO2	Makephysicallyjustifiedassumptionsto simplify and carry out	C3	3		5	CT, MT, F

	feasible analysis of real- life fluid flow				
	and heat transfer problems.				
CO3	Use powerful computational tools to analyse fluid dynamics and heat	C4	3	1-4	CT/ASG, F
	transfer related problems.				
CO4	Apply these methods and tools to simulate the resistance and propulsion related flow phenomena in the field of ship hydrodynamics	C5	1	1-4	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
	The knowledge of mathematics and science has to be acquired to figure out current
CO1-PO1	best practices for numerical model and method selection and assessment of the uality
	of results obtained
CO2-PO2	In order to simplify and solve real life fluid flow and heat related problems, physically
CO2-FO2	justified assumptions need to be made.
CO3-PO5	To analyze the fluid dynamics and heat transfer related problems modern tools like
CO3-PO3	flow and heat transfer simulation software like fluent will be used.
CO4-PO9	In order to implement CFD techniques and tools to simulate real world resistance and
CO4-PO9	propulsion related flow phenomena in the field of ship hydrodynamics

Week	Contents	Assessment
Week 1	Introduction and Governing Equations of Fluid Flow	
Class 1	Introduction, Finite Control Volume]
Class 2	Substantial Derivative]
Class 3	Physical meaning of gradient of velocity]
Week 2	Governing Equations of Fluid Flow	
Class 4	Conservation and non-conservation form of continuity equation	CT 1
Class 5	Conservation and non-conservation form of Navier-Stokes equation	CT 1, Final Exam
Class 6	Energy equation	- Tillai Exalli
Week 3	Boundary Integral Method	
Class 7	Discretisation and Interpolation	
Class 8	Boundary Element Method	
Class 9	Green's theorem, Application of Boundary Integral Method to radiation	
	and diffraction problems	
Week 4	Discretization schemes	
Class 10	finite difference methods, finite volume methods,	
Class 11	Assessment 01	
Class 12	finite element methods, spectral methods	1
Week 5	Finite Volume Method	CT 2,
Class 13	Diffusion problem	Final Exam

Class 14	Convection – Diffusion problem,	
Class 15	Discretization Schemes,	
Week 6	Finite Volume Method	
Class 16	Pressure – Velocity coupling,	
Class 17	Solution of Discretized Equations,	
Class 18	Unsteady flows	
Week 7	Finite Volume Method	
Class 19	Implementation of Boundary Conditions,	
Class 20	Errors and Uncertainty in CFD modeling	
Class 21	Assessment 02	
Week 8	Turbulence Modelling	
Class 22	Characteristics of turbulent flow,	
Class 23	Transition from laminar to turbulent flow,	
Class 24	Reynolds Averaged Navier Stokes Equation (RANS),	
Week 9	Turbulence Modelling	
Class 25	Turbulence Models, i.e., k-epsilon model	Mid Term,
Class 26	k-omega model, Spalart Almaras model,	Final Exam
Class 27	LES, DES, DNS models	
Week 10	Grid generation	
Class 28	Body-fitted coordinate grids for complex geometries	
Class 29	Cartesian vs curvilinear grids,	
Class 30	Mid-term exam	
Week 11	Grid Generation	
Class 31	Block-structured grids, Unstructured grids,	
Class 32	Discretization in unstructured grids,	
Class 33	Staggered vs co-located grid arrangements	
Week 12	Free Surface Flow	
Class 34	free surface computation with linear and fully nonlinear boundary conditions,	
Class 36	CFD application to free surface flow past ship shape objects using	CT-3, Final
Class 50	Reynolds Averaged Navier Stokes Equation (RANS).	Exam
Week13	Error and Uncertainty Analysis in CFD	Exam
Class 37	Errors and Uncertainty in CFD	
Class 38	Numerical Errors	
Class 39	Input Uncertainty, Physical Model Uncertainty	
Week 14	Error and Uncertainty Analysis in CFD	
Class 40	Verification and Validation	
Class 41	Assessment	
Class 42	Course review	

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/		CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment	Class		CO1, CO2, CO3,	
(40%)	Participation	5%	CO4	
	Mid term	15%	CO2, CO4	C1, C2, C4
Fina	al Exam	60%	CO1	C1, C2

		CO2	C1, C2,C4
		CO3	C2, C4
		CO4	C2,C3,C4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, H.K. Versteeg and W Malalasekera, 2nd edition, Pearson Prentice Hall Editions, 2007.
- 2. Computational Methods for Fluid Dynamics, Ferziger, J.H. and Peric, M., 3rd edition, Springer-Verlag publishing group, 2002.
- 3. The Boundary Element Method with Programming for Engineers and Scientists, Beer, G., Smith, I., Duenser, C., Springer-Verlag/Wien publisher, 2008.
- 4. Computational Fluid Dynamics: An Introduction, John F. Wendt, 3rd edition, Springer Verlag Berlin Heidelberg, 2009.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 389 Credit Hours: 3.00
Course Title: Marine Production and Planning Contact Hours: 3.00

Level and Term: Level 3 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Marine Production and Planning is a theoretical course designed to teach students about detail process and production planning of Marine vessels, shipyard and offshore platforms. In this course students will be acknowledged about the programming concept and network analysis. Thus, they will develop the necessary knowledge and skills for product standardization, scheduling and resource allocation involved in production of marine structures.

OBJECTIVES

- 1. To familiarize with ship production system.
- 2. To able to organize the design, material management in hull and outfit processing.
- 3. To make proficient in resource allocation, cost estimation for standardized production.
- 4. To understand various programming concept, database management and network analysis.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Perform** the Production Planning and control.
- 2. **Analyse** ship production methods, shipyard layout & productivity;
- 3. Apply linear programming, Network analysis and DBMS in shipbuilding
- 4. **Evaluate** production, scheduling and resource allocation;
- 5. **Build** and lead effective production teams and shipbuilding projects;

COURSE CONTENTS

- 1. Overview of ship production system; Shipbuilding Process, Shipyard Layout and Shipyard productivity.
- 2. Production Planning and Control; Introduction, Forecasting, Inventory, MRP, CPM, PERT, etc.
- 3. Design Process, Shipbuilding Process & Methods and Material Management in hull outfit and steel processing.
- 4. Shipbuilding production, scheduling, resource allocation and cost estimation.
- 5. Product standardization, work simplification, work breakdown and integrated zone engineering.
- 6. Linear programming concepts; introduction, requirement, formulations, solutions, etc.
- 7. Network analysis; Critical Path Analysis- introduction, advantage, fundamentals, logical sequencing, scheduling computations, etc.
- 8. Data Base Management System (DBMS) in production planning and control; overview, architecture, data models, schemas, independence, rules, generalization, specialization &

normalization, etc.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	course outcomes (cos)				PROGRAM OUTCOMES (PO)								
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Perform the production planning and control.												
CO	Analyze ship production methods, shipyard		V										
2	layout & productivity;		V										
CO	Apply linear programming, Network analysis												
3	and DBMS in shipbuilding			٧									
CO	Evaluate production, scheduling and resource										V		
4	allocation.										V		
CO	Build and lead effective production teams and											V	
5	shipbuilding projects											V	

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Perform the production, planning and control.	A2		1	1-4	CT, F
CO2	Analyze ship production methods, shipyard layout & productivity;	C4		4	1-4	CT, ASG, F
CO3	Apply linear programming, Network analysis and DBMS in shipbuilding	C3	1	3	5	CT, Mid Term, F
CO4	Evaluate production, scheduling and resource allocation.	C5	3	5	1-4	Mid Term, F
CO5	Build and lead effective production teams and shipbuilding projects	P5	2	2		ASG, Pr

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO2	Students will be able to take identify and undertake the necessary steps for planning
	and control during production.
CO2-PO2	By analyzing various methods of productions and layout, students will be capable of
	decision making for higher productivity.
CO3-PO3	Upon taking into consideration of database management system and network
	analysis, students will develop the skill of choosing appropriate planning and
	production design,
CO4-PO10	Students will be able to use programming tools and network so that they can
	evaluate and schedule the production with allotted resources.
CO5-PO11	Students will be developed with the knowledge of how to lead a production process
	including the decision making capability in individual projects.

TEACHING METHODOLOGY

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Overview of ship production system, stages and evolution	
Class 2	Shipbuilding layout and influencing factors	
Class 3	Layout of shipyard with respect to different generation of shipbuilding.	
Week 2	Production Planning and Control	
Class 4	Production system, classification and function	
Class 5	Forecasting, their types, approaches and function	CT 1,
Class 6	Inventory and their models	Final Exam
Week 3	Production Planning and Control	
Class 7	MRP, Inputs and outputs of MRP models	
Class 8	Network Technique of project management	
Class 9	Calculation models and steps in calculations in a Network Analysis	
Week 4	Design Process	
Class 10	Shipbuilding Process & Methods	
Class 11	Material Management in hull outfit and steel processing.	
Class 12	Assessment 1	
Week 5	Product Work Breakdown	
Class 13	Work simplification	
Class 14	Characteristics of WBS	CT 2,
Class 15	Work breakdown and integrated zone engineering.	Final Exam
Week 6	Layout Strategy of Production System	
Class 16	Layout Strategy of Production System	
Class 17	Requirements and strategies of good layout	
Class 18	Procedure for line balancing	
Week 7	Hull Production	

Class 19	Material handling method and process in shipyard	
Class 20	Welding and weld defects	
Class 21	Assessment 02	
Week 8	Outfitting	
Class 22	Outfitting pattern and characteristics	Mid Term,
Class 23	Outfitting works in various spaces of ship	Final Exam
Class 24	Inspection before commissioning of ships	
Week 9	Cost Assessment in Ship Production	
Class 25	Different approaches of cost assessment in ship building.	
Class 26	Salient features of various method	
Class 27	Advantage and disadvantage of various methods	
Week 10	Network Analysis	
Class 28	Projects and its salient features	
Class 29	Working methodology of critical path analysis	
Class 30	Activities and events in CPA	
Week 11	Network Analysis	
Class 31	Dependency rule and logical sequencing	Mid Term,
Class 32	Forward Pass Computation and Backward Pass Computation	Final Exam
Class 33	Mid-term exam	
Week 12	Database Management System	
Class 34	DBMS and it's characteristics	
Class 35	The 3-tier architecture of DBMS.	
Class 36	Entity-Relationship Model and Relational Model	
Week13	Database Management System	
Class 37	Generalization, Specialization and Inheritance in DBMS	
Class 38	Codd's 12 rules in a DBMS	
Class 39	Relational algebra	CT 3,
Week 14	Database Management System	Final Exam
Class 40	The mapping process of Entities and Relationships available to	
	convert E-R diagram into relational scheme	
Class 41	Assessment	
Class 42	Course review	

Components		Gradin g	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	A2, A5, C1
Continuous	Assignment 1-3	2070	CO2, CO5	C2, C4
Assessment	Class	5%	CO1, CO2, CO3,	C3, A4
(40%)	Participation	3%	CO4, CO5	C3, A4
	Mid term	15%	CO3, CO4	C1, C6, P1
			CO1	C1, C6
Final Exam		60%	CO2	A3, C4,C5
		0070	CO3	C3, A4
			CO4	C5

		CO5	A4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Engineering for Ship Production, Lambs
- 2. Ship Production, Hammon and Moore

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 431 Credit Hours: 3.00
Course Title: Ship Hull Vibration Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is designed to provide knowledge on Ship Vibration which covers the basic ship vibration, types of vibration, mathematical basis of ship vibration, transverse vibration of beams, hydrodynamic inertial coefficients, virtual weights, torsional vibration of ships and mounting of engines that are essential for understanding the vibration problems in ship and offshore structures.

OBJECTIVES

- 1. To introduce the students with the types, causes and reduction of ship vibration
- 2. To enable the students proper understanding and interpretation of the results of hull vibration.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the types and causes of ship vibration
- 2. **Interpret** the consequences of vibration, the limits and **predict** possibilities of reduction.
- 3. **Analyze** the frequencies of vibration for different types of ships/ Floating bodies.
- 4. **Apply** analytical and numerical solutions of free and forced global hull-girder vibration for various degree of freedoms

COURSE CONTENTS

- 1. **Introduction and Mathematical basis of Ship vibration:** Definition and types of ship hull vibration, causes of hull vibration, Modes of vibration, Importance of vibration on ships, Mathematical basis of ship vibration calculation of ship hull vibration, Natural vibration and forced vibration, Resonance and Damping, Natural vibration and forced vibration with damping, Transverse vibration of beams.
- 2. **Hydrodynamic Inertia Coefficients and Added Virtual Weight:** Calculation of added mass Effects of restricted water on added virtual mass, added mass for hull girder vibration (vertical and horizontal), Added mass moment of inertia in torsional vibration.
- 3. Natural Frequencies of a Ship's Hull: Measurement of ship vibration, Two-Node vertical and horizontal frequencies of a ship hull, Higher flexure frequencies, Torsional frequencies of a hull, Empirical formulae for calculating hull frequencies: Schlick formula, Todd formula, Burrill formula, Bunyan formula, Lockwood Taylor formula, Kumai's Formula. Frequencies of higher modes.
- 4. Hull Response to Exciting Forces: Allowable limits of vibration in a ship, Calculation of

- amplitude, Transverse vibration of engines, Sprung masses, Vibration induced in ship structure due to wave, propeller and machinery, Tensional, flexural and longitudinal vibrations of propeller shafting system.
- 5. Consequences and Prevention of Ship Vibration: Consequences of vibration in different types of vessels. Reduction of resonant vibration, Reduction of exciting forces, Reduction of existing vibration, Reduction of engine unbalance, Reduction of local vibration, Use of vibration Neutralizers, Elastic mountings, Reduction of vibration by propeller and machinery selection, suppression, isolation and insulation.
- 6. **Single degree of freedom systems:** Free and forced vibrations, clamping, classification and damped systems. Energy methods. Vibration isolation and transmissibility. Vibration measuring instruments such as displacement, velocity, acceleration and frequency measurements, Dunkerley's equation.
- 7. **Two degrees of freedom system:** Free, forced, damped and undamped motions matrix formulation, matrix method, using of Lagrange's equations to determine equations of motion, Dynamic vibration absorbers, principle of Orthogonality. Semi-definite systems. Combined rectilinear and angular modes. Torsional systems.
- 8. **Multi degrees of freedom systems:** Free and Forced vibrations of longitudinal torsional and lateral modes. Critical speeds of rotors matrix formulation, stiffness and flexibility influence coefficients. Eigen value problem Matrix method, Matrix interactions technique for Eigen values and Eigen vectors. Stodola's method, Hozler's method.
- Continuous Systems: Axial vibrations of bars, torsional vibrations of shafts, transverse vibrations
 of strings and bending vibrations of beams. Free and forced vibration of strings classical and
 energy methods.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO))				
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the types and causes of ship vibration												
CO2	Interpret the consequences of vibration, the limits and predict possibilities of reduction.		1										
CO3	Analyze the frequencies of vibration for different types of ships/ Floating bodies.		1										
CO4	Apply analytical and numerical solutions of free and forced global hull-girder vibration for various degree of freedom			1									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	CP	CA	KP	Assessment Methods
CO1	Explain the types and causes of ship vibration	C2			1,2	СТ
CO2	Interpret the consequences of vibration, the limits and predict possibilities of reduction.	C2,C3			1,4	F, Mid Term
CO3	Analyze the frequencies of vibration for	C4	1		1-4	CT, Mid

	different types of ships/ Floating				Term, F
	bodies.				
	Apply analytical and numerical				
CO4	solutions of free and forced global hull-	C3	1,2	5	CT/ASG, F
CO4	girder vibration for various degree of	C3	1,2		CI/ASO, I
	freedom				

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	To explain the ship hull vibration with the basic science and mathematical
	formulation and
CO2-PO2	In order to identify and interpret the causes and effects of hull vibration and their
	allowable limits and based on the consequences to predict the possible solution to
	reduce the problems.
CO3-PO2	In order to estimate and analyze various mode of frequency of ship hull vibration
	using engineering sciences.
CO4-PO3	To find solutions of various mood vibration applying analytical and numerical
	method and use the results to consider dynamics features of hull at an earlier design
	stage of the project.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Individual Assignment, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents/Topics	Assessment
Week 1	Introduction and Mathematical basis of Ship vibration	
Class 1	Overview to ship vibration Course, Definition and types of ship hull vibration	
Class 2	Causes of hull vibration, Modes of vibration, Importance of vibration on ships	
Class 3	Mathematical basis of ship vibration calculation of ship hull vibration	-
Week 2	Introduction and Mathematical basis of Ship vibration (Contd.)	CT 1
Class 4	Natural vibration and forced vibration	
Class 5	Natural vibration and forced vibration, Magnification factor, resonance	-
Class 3	and damping	
Class 6	Natural vibration and forced vibration with Viscous damping	1
Week 3	Introduction and Mathematical basis of Ship vibration (Contd.)	-
Class 7	Natural vibration and forced vibration with Viscous damping	-
Class 8	Transverse vibration of beams and Review of this chapter	-
Class 9	Assesment-1	-
Week 4	Hydrodynamic Inertia Coefficients and Added Virtual Weight	
Class 10	Concepts of virtual added mass/weight, Effects of restricted water on	-
Class 10	added virtual mass	
Class 11	Added mass for vertical and horizontal hull girder vibration	-
Class 12	Added mass moment of inertia in torsional vibration, Mathematical	-
Class 12	Examples and Review of this chapter	
Week 5	Natural Frequencies of a Ship's Hull	
Class 13	Measurement of ship vibration and vibration generators	CT 2,
Class 14	Two-Node vertical and horizontal frequencies of a ship hull	Final Exam
Class 15	Higher flexure frequencies, Torsional frequencies of a hull, Frequencies	-
Class 15	of higher modes	
Week 6	Natural Frequencies of a Ship's Hull (Contd.)	
Class 16	Empirical formulae for calculating hull frequencies: Schlick formula,	-
	Todd formula	
Class 17	Empirical formulae for calculating hull frequencies: Burrill formula,	
	Bunyan formula, Lockwood Taylor formula, Kumai's Formula	
Class 18	Assessment -2]
Week 7	Hull Response to Exciting Forces	
Class 19	Allowable limits of vibration in a ship, Calculation of amplitude, Sprung	
	masses	
Class 20	Vibration induced in ship structure due to wave, propeller and machinery,	
	Transverse vibration of engines	
Class 21	Tensional, flexural and longitudinal vibrations of propeller shafting	
	system and Review of this chapter	Mid Term &
Week 8	Consequences and Prevention of Ship Vibration:, ,	Final Exam
Class 22	Consequences of vibration in different types of vessels. Reduction of	
	resonant vibration, Reduction of exciting forces, Reduction of existing	
	vibration, Reduction of local vibration, Use of vibration Neutralizers,	
Class 23	Reduction of engine unbalance, Elastic mountings, Reduction of vibration	
	by propeller and machinery selection, suppression, isolation and insulation	
Class 24	Reduction of vibration by propeller and machinery selection, suppression,	
	isolation and insulation and Review of this chapter	
Week 9	Single degree of freedom systems	1
Class 25	Free and forced vibrations, clamping, classification and damped systems.	1
	Energy methods	
Class 26	Vibration isolation and transmissibility. Vibration measuring instruments	

		1
	such as displacement, velocity, acceleration and frequency measurements,	
	Dunkerley's equation.	
Class 27	Assessment 3	
Week 10	Twodegrees of freedom system	
Class 28	Free, forced, damped and undamped motions matrix formulation, matrix method	
Class 29	using of Lagrange's equations to determine equations of motion, Dynamic vibration absorbers, principle of Orthogonality	
Class 30	Semi-definite systems. Combined rectilinear and angular modes. Torsional systems.	CT-3/ASG, Mid Term,
Week 11	Multi degrees of freedom systems	Final Exam
Class 31	Free and Forced vibrations of longitudinal torsional and lateral modes	
Class 32	Critical speeds of rotors matrix formulation, stiffness and flexibility influence coefficients	
Class 33	Critical speeds of rotors matrix formulation, stiffness and flexibility influence coefficients	
Week 12	Multi degrees of freedom systems	
Class 34	Eigen value problem, Matrix method, Matrix interactions technique for Eigen values and Eigen vectors	
Class 35	Matrix method, Matrix interactions technique for Eigen values and Eigen vectors	
Class 36	Stodola's method and Hozler's method	
Week13	Continuous Systems	
Class 37	Axial vibrations of bars and Torsional vibrations of shafts	
Class 38	Transverse vibrations of strings and bending vibrations of beams	
Class 39	Free and forced vibration of strings classical and energy methods	Final Exam
Week 14		
Class 40	Revision Class-1	1
Class 41	Revision Class-2	
Class 42	Assessment -4	

Com	Components		COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2	C1, C2, C3
Continuous	Assignment	2070	CO4	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	3%	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Final Exam		60%	CO2	C2, C3
			CO3	C4
Total Marks		100%		

 $\overline{(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)}$

- 1. Ship Hull Vibration F. H. Todd (1961)
- 2. Naval Architecture for Marine Engineers W. Muckle (1975): Vibration Chapter
- 3. Muckle's Naval Architecture Revised by D. A. Taylor (1987)
- 4. Guide to Ship Vibration NKK (1984)
- 5. Dynamic Analysis of Offshore Structures C. A. Bravia & S. Walker (1979)

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 435 Credit Hours: 3.00
Course Title: Computer Aided Ship Production Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE

Course Code: NAME 107, NAME 207

Course Title: Introduction to Naval Architecture and Marine Engineering, Ship Design

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Optional Theoretical Course based on in-depth knowledge on Ship Production by using software. The goal of this course is to provide the basic concepts and tools of computer aid ship design and how to apply these concepts and tools in practical computer aided ship design problems.

OBJECTIVES

- 1. Be able to impart knowledge on 3D modelling.
- 2. Achieving ability to familiarize the students with the industry standard designs.
- 3. Be proficient to produce ships' hull and other critical parts.
- 4. Be able to determine the effectiveness of CAM in ship designing.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Develop** 3D hull modelling and **fit** internal structures
- 2. **Produce** a limited set of design drawings to industry standards
- 3. **Develop** a concept design based on an appraisal of operational requirements
- 4. **Create** an assembly of parts, **create** a detailed drawing, **assemble** a manufacturing environment.
- 5. Create basic NC sequences necessary for material removal.
- 6. **Perform** ship design, production, management and critically **assesses** their contribution and effectiveness.

COURSE CONTENTS

- 1. Introduction to computer aided manufacture (CAM)
- 2. Surface modeling, B-spline, non-uniform rational B-spline.
- 3. physically based deformable surface, sweeps and generalized cylinders
- 4. offsets, blending and filtering surfaces
- 5. Mathematical representation of hull form
- 6. Numerical control (NC) and robotics application in CAM
- 7. shell plate development
- 8. Modern ship production methods in a total ship system and concurring engineering context
- 9. Basic fabrication and material handling processes, process planning and scheduling.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	No. COURSE OUTCOMES (COs)		PF	RO	GF	RAI	М (OU	T	CO	MES	(PO)
110.	COURSE OUTCOMES (COS)	1	1 2 3 4		5	6	7	8	9	10	11	12	
CO1	Develop 3D hull modelling and fit internal structures			1									
CO2	Produce a limited set of design drawings to industry standards		V										
CO3	Develop a concept design based on an appraisal of operational requirements			1									
CO4	Create an assembly of parts, create a detailed drawing, assemble a manufacturing environment.							√					
CO5	Create basic NC sequences necessary for material removal.		√										
CO6	Performshipdesign,production,managementandcriticallyassessestheircontributionand effectiveness.					V							

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Develop 3D hull modelling and fit internal structures	C6	1	1	1-4	CT/ASG, F
CO2	Produce a limited set of design drawings to industry standards	C3	1	3	1-4	CT/ASG,F
CO3	Develop a concept design based on an appraisal of operational requirements	C6	1	2	5	CT/ASG,
CO4	Create an assembly of parts, create a detailed drawing, assemble a manufacturing environment.	C6, C6, C6	1	1	1-4	CT/ASG, F MT
CO5	Create basic NC sequences necessary for material removal.	C6	1	1	3	CT/ASG, F MT
CO6	Perform ship design, production, management and critically assesses their contribution and effectiveness.	C3, C5	1	2	1-4	CT/ASG, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPING

Mapping	ng Justifications					
CO1-PO3	To develop 3D hull modelling and fit internal structures, by using software.					
CO2-PO2	In order to produce a limited set of design drawings to industry standards.					
CO3-PO3	To develop a concept design based on an appraisal of operational requirements.					

CO4-PO7	To create an assembly of parts, create a detailed drawing, assemble a manufacturing
CO4-FO7	environment.
CO5-PO2	To create basic NC sequences necessary for material removal.
CO6-PO5	In order to perform ship design, production, management and critically assesses their
CO0-FO3	contribution and effectiveness for complex engineering problems.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1	Introduction to computer aided manufacture (CAM)	
Class 1	Introduction	
Class 2	Basic Strategies	
Class 3	Approaches in Design	
Week 2	Surface modelling	
Class 4	Defining Surface Parts	
Class 5	Combining Surfaces	CT 1,
Class 6	Surface vs Solid Modeling	Final Exam
Week 3	B-spline	
Class 7	Types of B-spline	
Class 8	Curves and Surfaces	
Class 9	Algorithms of B-spline	
Week 4	Non-uniform rational B-spline	
Class 10	Usage of Non-uniform rational B-spline	
Class 11	Assessment 01	
Class 12	Construction of the basis functions	
Week 5	Physically based deformable surface	

Class 13	Modelling of Physically based deformable surface	
Class 14	Approach	
Class 15	Applications of Physically based deformable surface	Mid Taum
Week 6	Sweeps and generalized cylinders	Mid Term, Final Exam
Class 16	Modelling of Sweeps and generalized cylinders	Tillal Exam
Class 17	Approach	
Class 18	Applications of Sweeps and generalized cylinders	
Week 7	Offsets	
Class 19	Modelling and Approach	
Class 20	Application of Offsets	
Class 21	Assessment 02	
Week 8	Blending and filtering surfaces	
Class 22	Modelling of Blending and filtering surfaces	Mid Term,
Class 23	Approach	Final Exam
Class 24	Applications of Blending and filtering surfaces	
Week 9	Mathematical representation of hull form	
Class 25	Hull form and geometry.	
Class 26	Methodology for Hull Modeling	
Class 27	Guidelines for Work Sequence	
Week 10	Numerical control (NC)	
Class 28	Fundamentals of NC	
Class 29	Advantages and Limitations, Components of NC	
Class 30	Mid-term exam	
Week 11	Robotics application in CAM	
Class 31	Advantages of Robotics in CAM	CT 2,
Class 32	Limitations of Robotics in CAM	Final Exam
Class 33	Applications	
Week 12	Shell plate development	
Class 34	Methodology of shell plate development	
Class 35	Methodology of shell plate development	
Class 36	Methodology of shell plate development	
Week13	Modern ship production methods in a total ship system and	
	concurring engineering context	
Class 37	Terms associated	
Class 38	Methods	CT 3,
Class 39	Methods and their limitations	Final Exam
Week 14	Basic fabrication and material handling processes, process planning	
	and scheduling	
Class 40	Handling Processes, Process planning and scheduling	
Class 41	Assessment	
Class 42	Course review	

Com	ponents	Grading	COs	Blooms Taxonomy			
Continuous	Class Test/	20%	CO1	C2, C6			

Assessment	Assignment 1-3		CO2	C3, C3
(40%)			CO3	C5, C6
			CO4	C6
			CO5	C6
			CO6	C3, C5
	Class Participation	5%	CO1	
			CO3	C3,C4C6
			CO4	A1, C6
			CO1	C2, C3, C4 C6
			CO2	C3, C4,C5
Fine	al Exam	60%	CO3	C5 C6
171116	ai Exaili	00%	CO4	C5, C6, A4,P1
			CO5	C6, A2, P1
			CO6	C3, C5
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Computer aided applications in ship technology, by <u>C.Kuo</u>, <u>K. J. MacCallum</u>.
- 2. Computer Aided Ship Design and Numerically Controlled Production of Towing Tank Models by D.F. Rogers, F. Rodriguez, S.G. Satterfield
- 3. Ship Production, Hammon and Moore.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 437 Credit Hours: 3.00
Course Title: Inland Water Transportation System Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE Course Code: NA Course Title: NA

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Optional Theoretical Course which emphasises the Inland Water Transportation System, operations and efficient movement of freight and passengers. Students are exposed to the processes used for managing inland waterway operations to managing system-wide operations. It will benefit students wishing to pursue engineering employment in waterway industries with a shipping company or governmental agency or a company providing services to the industry.

OBJECTIVES

- 1. To enable the students to identify the pattern and develop a network for inland water system.
- 2. To enable for selection suitable vessel for inland water transportation.
- 3. To make decisions on the mode of inland water transportation.
- 4. To provide the students with a basic understanding to identify and comply with the rules and regulations for inland water transportation system

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the pattern of inland water transportation.
- 2. **Develop** network system for inland water.
- 3. **Identify** the suitable vessels and their characteristics for inland transportation.
- 4. **Design** of the suitable vessels for inland transportation.
- 5. Make decisions on the modes of inland water transportation
- 6. **Identify** special regulations for inland transportations.

COURSE CONTENTS

- 1. Inland Water Transport System: Advantage, limitation, Government strategy, Responsibilities of different organizations.
- 2. Inland waterways & their peculiarities, Classification, Development constraint, Recommendation relating to waterway network.
- 3. Maintenance of navigational channel: siltation, bank erosion & dredging.
- 4. Requirements for dredging, dredging technique, disposal of sediments, dredging of fairways.
- 5. Inter-modal transportation, Specialized inter-modal transportation vessel.
- 6. Design of inland waterway transportation system, Design & operational aspects of small craft.

- 7. Design of specialized inland vessel, tug-barge system.
- 8. Different type of tug, barge & connection system, Shallow draft tug, inland passenger vessels, research vessel, pontoon, hydrofoil, Ro- ro vessel, etc., Marine Salvage.
- 9. Inter-modalism and multi-modalism, advantage and disadvantage, Intermodal Transport Chain,
- 10. Intermodal Transport Units, Techniques & Costs, Inter-modality at Inland Water Transport,
- 11. Intermodal Transportation networks, Transport system & network design, SSCA & MEA
- 12. Intermodal design process guideline, Framework for intermodal networks design at IWT.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES:

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO					O)						
110.	COURSE OUTCOMES (COS)	SE OUTCOMES (COs)		4	5	6	7	8	9	10	11	12	
CO1	Explain the pattern of inland water transportation												
CO2	Develop network system for inland water												
СОЗ	Identify the suitable vessels and their characteristics for inland transportation	1											
CO4	Design of the suitable vessels for inland transportation			√									
CO5	Make decisions on the modes of inland water transportation				V								
CO6	Identify special regulations for inland transportations						V						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the pattern of inland water transportation	C2	1		1, 4- 6	CT/ ASG, F
CO2	Develop network system for inland water	C2	1,3		5-6	CT/ ASG, MT, F
CO3	Identify the suitable vessels and their characteristics for inland transportation	C4, C5	1,3		5-6	CT/ ASG, F
CO4	Design of the suitable vessels for inland transportation	C2, C4, C6	1		6	CT/ ASG, MT, F
CO5	Make decisions on the modes of inland water transportation	C2, C5	3		1,5	CT/ ASG, F
CO6	Identify special regulations for inland transportations	C4, C5	1,3		7	CT/ ASG, MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics, science and engineering fundamentals have to be
	applied to explain the pattern of inland water transportation.
CO2-PO3	In order to design network system for inland water transportation.
CO3-PO1	The knowledge of mathematics, science and engineering fundamentals have to be
	applied to identify the suitable vessel with desired characteristics.
CO4-PO3	In order to design suitable vessel for inland water transportation.
CO5-PO4	In order to provide decision on the mode of inland water transportation by
	investigations including experiments, analysis etc.
CO6-PO6	In order to identify special regulation for inland transportations.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment			
Week 1	Introduction				
Class 1	Introduction to Inland Water Transport System				
Class 2	Advantage and limitation				
Class 3	Inland waterways, classification & their peculiarities				
Week 2	Inland waterways				
Class 4	Inland waterways, classification & their peculiarities	- CT 1 - Final			
Class 5	Government Strategy, Responsibilities of different Organizations	Exam			
Class 6	Development Constraint of Inland Waterways	Lam			
Week 3	Maintenance				
Class 7	Maintenance of navigational channel; siltation, bank erosion & dredging				
Class 8	Requirements for dredging, disposal of sediments, dredging of fairways				
Class 9	Dredging technique				

Week 4	Inter-modal transportation	
Class 10	Recommendation relating to waterway network	
Class 11	Inter-modal transportation	
Class 12	Specialized inter-modal transportation vessel	
Week 5	Design of inland waterway transportation system	CITE A
Class 13	Design of inland waterway transportation system (Contd)	CT 2
Class 14	Design of inland waterway transportation system	— Final
Class 15	Design & operational aspects of small craft (Contd)	— Exam
Week 6	Design of small craft and specialized vessel	
Class 16	Design & operational aspects of small craft	
Class 17	Design of specialized inland vessel (Contd)	
Class 18	Design of specialized inland vessel	
Week 7	Tug-barge system	
Class 19	Tug-barge system	
Class 20	Different type of tug, barge & connection system	
Class 21	Shallow draft tug, inland passenger vessels, research vessel	
Week 8	Other system	Mid
Class 22	Pontoon, hydrofoil, Ro- Ro vessel	Term
Class 23	Marine Salvage	Final
Class 24	Inter-modalism and multi-modalism	Exam
Week 9	Inter-modalism and multi-modalism	
Class 25	Advantage and disadvantage of Inter-modalism and multi-modalism	
Class 26	Intermodal Transport Chain, Intermodal Transport Units	
Class 27	Intermodal Transport Techniques	
Week 10	Intermodal Transport Costs	
Class 28	Intermodal Transport Costs	
Class 29	Inter-modality at Inland Water Transport	
Class 30	Intermodal Transportation networks	
Week 11	Transport system & network design	CITE 2
Class 31	Transport system & network design (Contd)	CT 3
Class 32	Transport system & network design (Contd)	— Final — Exam
Class 33	Transport system & network design	- Exam
Week 12	Intermodal design process guideline	
Class 34	SSCA & MEA	
Class 35	Intermodal design process guideline (Contd)	
Class 36	Intermodal design process guideline	
Week13	IWT Framework	
Class 37	Framework for intermodal networks design at IWT	
Class 38	Organogram of various regulation authorities	
Class 39	Differences and similarities of different regulation authorities	Final
Week 14	Rules and regulations	Exam
Class 40	Rules and regulations of different authorities	
Class 41	Analysis of some important accidents in Inland Waterways	
Class 42	Future developments in Inland Waterways	

Co	omponents	Grading	COs	Blooms Taxonomy
Continuous	Class Test/	20%	CO1, CO2, CO4	C2, C4, C6
	Assignment 1-3	ssignment 1-3 CO4		C2, C4, C6
Assessment (40%)	Class Participation	5%	CO6	
(40%)	Mid term	15%	CO1, CO3, CO5	C1, C2, C3
			CO1	C1, C2, C3
Final Exam			CO2	C1, C2, C3
		60%	CO3	C4, C5
		00%	CO4	C2, C4, C6
			CO5	C2, C3 C5
			CO6	C4, C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Inland Water Transportation Systems Series, Authors: Dr. Sulaiman Olanrewaju Oladokun
- 2. Inland Waterway Transport: Challenges and Prospects, edited by Bart Wiegmans, Rob Konings
- 3. UNECE Resolutions
- 4. CCNR Regulations
- 5. Inland Shipping Ordinance, 1976 (Ordinance No. LXXII of 1976)
- 6. European Policy for the Promotion of Inland Waterway Transport A Case Study of the Danube River: By Svetlana Dj. Mihic and Aleksandar Andrejevic

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 445 Credit Hours: 3.0
Course Title: Dredger and Dredging Technology Contact Hours: 1.5

Level and Term: Level 4 Term1

PRE-REQUISITE

Course Code: NAME 307

Course Title: Design of Special Ships

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Optional Theoretical Course based on existing and advanced logistics and technologies of dredger & dredging. This course provides an inventory of the dredging equipment and disposal techniques used in Bangladesh and provide guidance for activities associated with new work and maintenance projects. This course further provides guidance on the evaluation and selection of equipment and evaluation of disposal alternatives.

OBJECTIVES

- 1. To introduce with concepts of different dredging processes and dredging equipment.
- 2. To familiarize with the procedures for planning and the design considerations for meeting the objectives of a dredging project and associated problems.
- 3. To give an overview about dredging prospects of Bangladesh.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Identify** and **explain** about dredging methods, dredging technologies and dredging equipment;
- 2. **Analyze** dredging techniques and methods, output and productions;
- 3. Estimate the performance and output of various types of dredging and dredgers;
- 4. **Make** decisions for use of type of dredging equipment for different type of soil conditions;
- 5. **Plan** and **organize** effective dredging teams and dredging projects.

COURSE CONTENTS

1. Introduction to Dredging

- a. Definitions of Dredging, requirements of Dredging, Various purpose of dredging, Dredging requirement areas, Stages of Dredging;
- b. Dredging operation layout, Dredging procedure (Pretreatment, Extraction, and Disposal);
- c. Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection.

2. Dredger Classification

- a. Mechanical Dredger: application, advantages and limitations, types (Bracket, Grab, Backhoe with description);
- b. General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger, Trailing

Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger, others (Airlift, Augur suction, pneumatic, amphibious, water injection);

c. Mechanical vs Hydraulic Dredger

3. Cutter Suction Dredger (CSD)

- a. General Description (Area of application, History, Working Method),
- b. Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site),
- c. Dredging equipment,
- d. The drives,
- e. Spud Systems,
- f. General Layout

4. Trailing Suction Hopper Dredger

- a. General Description (characteristics, application area, history, working method),
- b. The design (Productive capacity, main dimensions, dredge installation, propulsive power, power balance, main layout),
- c. Technical Construction,
- d. Dredging Calculation (estimating discharge-head, effect of dredge material characteristics, pump performance characteristics, estimation of output of various types of dredging. Special features of dredge pump)

5. Type of accessories, pipes and floaters

- a. pipeline fittings, rubber hose, ball socket, etc.
- b. Pump and pipeline characteristics,
- c. Working point, working range,
- d. Operation of a pump and pipeline system.
- e. Environmental aspects of dredging.

6. Brief review of dredging need

a. dredging operation and dredging process for Bangladesh

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (Po			(PO)												
110.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12					
CO1	Identify and explain about dredging methods,		1															
COI	dredging technologies and dredging equipment;																	
CO2	Analyze dredging techniques and methods,		1	٦/	1	٦/	1		1									
CO2	output and productions;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																
CO3	Estimate the performance and output of various		V															
CO3	types of dredging and dredgers;		V															
CO4	Make decisions for use of type of dredging		1															
CO4	equipment for different type of soil conditions;			V														
CO5	Plan and organize effective dredging teams and						V											
	dredging projects;						٧											

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
	Identify and explain about dredging	C3, C4			1-4	CT
CO1	methods, dredging technologies and					
	dredging equipment;					
CO2	Analyze dredging techniques and methods,	C3			1-4	CT/ASG, F
CO2	output and productions;					
CO3	Estimate the performance and output of	C2			5	Mid Term
003	various types of dredging and dredgers;					Exam, F
	Make decisions for use of type of dredging	P7	3		1	
CO4	equipment for different type of soil					
	conditions;					
CO5	Plan and organize effective dredging	C6	1	1	7	CT, F
	teams and dredging projects;					

C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications						
CO1-PO2	Identifying various dredging methods, dredging technologies and dredging						
	equipment, student will be able to explain these.						
CO2-PO2	Students will be able to analyze dredging techniques and methods, output and						
	productions.						
CO3-PO2	Based on various operating criteria, students will be able to estimate the						
	performance and output of various types of dredging and dredgers.						
CO4-PO3	Student will be able familiar with the procedures for planning and the design						
	considerations for meeting the objectives of a dredging project and associated						
	problems. Hence able to make decision to design solutions of using dredging						
	equipment and technologies for different type of soil conditions.						
CO5-PO6	Students will be able to work as a team and learn about concerns and precautions for						
	the prevention of adverse effects on the environment and animal habitats and						
	utilization of dredged material for beneficial disposal are considered. Organizing						
	skill will help the learner to decide possible solutions which are safer to society						
	while designing a system.						

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	

Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Week	Contents	Assessment
Class 2 Various purpose of dredging, Dredging requirement areas, Stages of Dredging Class 3 Dredging operation layout Week 2 Introduction to Dredging (Contd.) Class 4 Dredging procedure (Pretreatment, Extraction, and Disposal) Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Week 1	Introduction to Dredging	
Class 3 Dredging operation layout Week 2 Introduction to Dredging (Contd.) Class 4 Dredging procedure (Pretreatment, Extraction, and Disposal) Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 1	Definitions of Dredging, requirements of Dredging,	
Class 3 Dredging operation layout Week 2 Introduction to Dredging (Contd.) Class 4 Dredging procedure (Pretreatment, Extraction, and Disposal) Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 2	Various purpose of dredging, Dredging requirement areas, Stages of	
Week 2 Introduction to Dredging (Contd.) Class 4 Dredging procedure (Pretreatment, Extraction, and Disposal) Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)		Dredging	
Class 4 Dredging procedure (Pretreatment, Extraction, and Disposal) Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 3	Dredging operation layout	
Class 5 Selection of Dredging Equipment: Criteria/Boundary Conditions, Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Week 2	Introduction to Dredging (Contd.)	
Factors in Selection. Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 4	Dredging procedure (Pretreatment, Extraction, and Disposal)	CT 1
Class 6 Review Class Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 5	Selection of Dredging Equipment: Criteria/Boundary Conditions,	
Week 3 Dredger Classification Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)		Factors in Selection.	
Class 7 Mechanical Dredger: application, advantages and limitations Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 6	Review Class	
Class 8 Types of dredging (Bracket, Grab, Backhoe with description) Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Week 3	Dredger Classification	
Class 9 General outline of Hydraulic dredger, Suction dredger, Cutter Suction Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 7	Mechanical Dredger: application, advantages and limitations	
Dredger Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 8	Types of dredging (Bracket, Grab, Backhoe with description)	
Week 4 Dredger Classification (Contd.) Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 9	General outline of Hydraulic dredger, Suction dredger, Cutter Suction	
Class 10 General outline of Trailing Suction Hopper Dredger, Reclamation Dredger, Barge Unloading Dredger Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)		Dredger	
Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Week 4	Dredger Classification (Contd.)	
Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 10	General outline of Trailing Suction Hopper Dredger, Reclamation	CT 2
Class 11 General outline of other types (Airlift, Augur suction, pneumatic, amphibious, water injection) Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)		Dredger, Barge Unloading Dredger	Final Exam
Class 12 Assement-1 (CT-1) Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 11	General outline of other types (Airlift, Augur suction, pneumatic,	I mai Exam
Week 5 Cutter Suction Dredger (CSD) Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)		amphibious, water injection)	
Class 13 Mechanical vs Hydraulic Dredger Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 12	Assement-1 (CT-1)	
Class 14 General Description (Area of application, History, Working Method) Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Week 5	Cutter Suction Dredger (CSD)	
Class 15 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 13	Mechanical vs Hydraulic Dredger	
Depth, Width of the cut, type of soil, transport distance, access to site) Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 14	General Description (Area of application, History, Working Method)	
Week 6 Cutter Suction Dredger (CSD) (Contd.) Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)	Class 15	Design (Production Capacity, Dredging Depth, Max/Min Dredging	
Class 16 Design (Production Capacity, Dredging Depth, Max/Min Dredging Depth, Width of the cut, type of soil, transport distance, access to site)		Depth, Width of the cut, type of soil, transport distance, access to site)	
Depth, Width of the cut, type of soil, transport distance, access to site)	Week 6	Cutter Suction Dredger (CSD) (Contd.)	
	Class 16	Design (Production Capacity, Dredging Depth, Max/Min Dredging	
		Depth, Width of the cut, type of soil, transport distance, access to site)	
Class 17 Review Class	Class 17	Review Class	
Class 18 Assesment-2 (CT-2)	Class 18	Assesment-2 (CT-2)	

Week 7	Cutter Suction Dredger (CSD) (Contd.)	Mid Term,
Class 19	Dredging equipment	Final Exam,
Class 20	The drives, Spud Systems	Presentation
Class 21	General Layout	
Week 8	Trailing Suction Hopper Dredger	
Class 22	General Description (characteristics, application area, history, working method)	
Class 23	The design (Productive capacity, main dimensions, dredge installation,	
	propulsive power, power balance, main layout)	
Class 24	The design (Productive capacity, main dimensions, dredge installation,	
	propulsive power, power balance, main layout)	
Week 9	Trailing Suction Hopper Dredger (Contd.)	
Class 25	Technical Construction	
Class 26	Dredging Calculation (estimating discharge-head, effect of dredge material characteristics)	
Class 27	Dredging Calculation (pump performance characteristics, estimation	
	of output of various types of dredging. Special features of dredge	Final Exam
	pump)	
Week 10	Trailing Suction Hopper Dredger (Contd.)	
Class 28	Review Class	
Class 29	Review Class	
Class 30	Assesment-3(Mid Term Exam)	
Week 11	Type of accessories, pipes and floaters	
Class 31	Pipeline fittings, rubber hose, ball socket, etc.	
Class 32	Pump and pipeline characteristics	
Class 33	Working point, working range	
Week 12		
Class 34	Operation of a pump and pipeline system.	
Class 35	Special features of dredge pump. Types of floaters.	CT 3,
Class 36	Environmental aspects of dredging	Final Exam
Week13	Brief review of dredging need in Bangladesh	
Class 37	Brief review of dredging need in Bangladesh	
Class 38	Dredging operation and dredging process for Bangladesh	
Class 39	Visit in an ongoing dredging project	
Week 14		
Class 40	Assessment -4 (CT-3)	
Class 41	Review Class	
Class 42	Review Class	

Components		Grading	COs	Blooms Taxonomy
Continuous	Class Test/	20%	CO1, CO2, CO5	C1,C2,C3
Continuous Assessmen t (40%)	Assignment 1-3	ment 1-3	CO2	C2,C3
	Class Participation	5%	CO1-CO6	
	Mid term	15%	CO3, CO6	C1, C3

		CO2	C2,C3
		CO3	C3
Final Exam	60%	CO4	C2
		CO5	C1,A2
		CO6	C1
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Designing Dredging Equipment, Prof.Ir. W.J.Vlasblom. Pagina 14 van 79. May 2005
- 2. Dredging-A handbook for Engineers by R.N. Bray, A. D. Bates J. M. Land December 1995
- Fundamentals of Hydraulic Dredging Second Edition, Thomas M. Turner, published by ASCE Press American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191-4400
- 4. Hydraulic structures, equipment and water data acquisition systems vol. ii Dredging Technology Rudolf van den Bosch

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 447 Credit Hours: 3.00
Course Title: Marine Transportation System Contact Hours: 3.00

Level and Term: Level 4 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The main purpose of this course for its graduates is to develop the competencies and corresponsive abilities in thinking and applying the major theories and techniques regarding the general science of transports, in area of maritime transport and port management, in order understand the ship/port operations, the harbours' activity and shipyard industry particularities. The main topics of this course as introductory module in maritime problems of study are limited to: maritime transport components, maritime market study and instruments, maritime voyage operations and financing support, contract operations in shipping, merchandise expeditions, fluvial transports, and containerization procedures.

OBJECTIVES

- 1. To enable to get a clear understanding of the Shipping Market.
- 2. To enable to evaluate the economics and pattern of the Maritime Trade.
- 3. To familiarize with the regulatory framework of Maritime Trade.
- 4. To enable to analyze maritime forecasting and market research.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Analyze** the working aspects of different types of economic organization of the shipping market.
- 2. **Evaluate** the different types of special features of shipping market.
- 3. **Predict** the global pattern of maritime trade and freight rate.
- 4. **Perform** maritime forecasting and market research.
- 5. Make decision regarding ship design to fulfill the demand of ship economics.

COURSE CONTENTS

- 1. The Economic Organization of the Shipping Market
- 2. The Shipping Market Cycle, The Shipping Markets
- 3. Supply, Demand and Freight rates
- 4. Cost, Revenue and Financial Performance, Financing Ships and Shipping Company
- 5. The Economic Principles of Maritime Trade, The global pattern of Maritime Trade
- 6. Bulk cargo and the economics of bulk shipping
- 7. The general cargo and the economics of liner shipping
- 8. The economics of ships and ship designs, The regulatory framework of maritime economics
- 9. The economics of shipbuilding and scrapping, Maritime forecasting and Market research

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PF	RO	GR	AI	И (ΟU	TC	OI	MES	(PO)
140.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	Analyze the working aspects of different types												
CO1	of economic organization of the												
	shipping market.												
CO2	Evaluate the different types of special	V											
CO2	features of shipping market.	\ \											
CO3	Predict the global pattern of maritime trade		V										
CO3	and freight rate.	. '											
CO4	Perform maritime forecasting and market		V										
CO4	research.		V										
CO5 Make decision regarding ship design to fulfill				J									
CO3	the demand of ship economics.			V									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Analyze the working aspects of different types of economic organization of the shipping market.	С3			1-4	CT, F
CO2	Evaluate the different types of special features of shipping market	C2			1-4	CT, MT, F
CO3	Predict the global pattern of maritime trade and freight rate	C3			5	CT/ASG, F
CO4	Perform maritime forecasting and market research.	A2			8	MT, F
CO5	Make decision regarding ship design to fulfill the demand of ship economics.	C5			5	CT, MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications					
CO1-PO2	In order to analyze the economic aspects of Shipping market.					
CO2-PO1	In order to identify the features of the shipping market.					
CO3-PO2	In order to study the maritime trade and be able to make a prediction about the					
	global trade.					
CO4-PO2	In order to perform maritime forecasting and research with sufficient research.					
CO5-PO3	In order to modify ship designs to cater the demands of the shipping market.					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Case Studies, Industry Evaluation.

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction	
Class 2	Introduction to the Shipping Market	
Class 3	The Economic Organization of the Shipping Market	
Week 2	The Shipping Market	
Class 4	The Shipping Market Cycle	
Class 5	Shipping Market's Supply and Demand	CT 1,
Class 6	Freight Rates	Final Exam
Week 3	Freight Market	
Class 7	Cost, Revenue and Financial	
Class 8	Financing Ships and Shipping Company	
Class 9	Freight Market and Operating Economics	
Week 4	Maritime Trade Market	
Class 10	The Economic Principles of Maritime Trade	
Class 11	The Economic Principles of Maritime Trade(Continued)	
Class 12	Assessment 01	
Week 5	Global Pattern of Maritime Trade	
Class 13	The Global Pattern of Maritime Trade	
Class 14	Prediction of Global Pattern of Maritime Trade	CT 2,
Class 15	Case Study regarding Maritime Trade	Final Exam
Week 6	Bulk Cargo Shipping	
Class 16	Bulk Cargo Shipping	
Class 17	Bulk Carrier Design Aspects to Meet global demand	
Class 18	Economics of Bulk Shipping	

Week 7	Liner Shipping	
Class 19	Global Cargo Shipping	
Class 20	The Economics of Liner Shipping	
Class 21	Assessment 02	
Week 8	Economics of Ship Design	
Class 22	Important Technical and Economic Features of Ship	Mid Term,
Class 23	The Economics of Ship and Ship Design	Final Exam
Class 24	Ship Design to Meet Global Demands	
Week 9	Maritime Economics	
Class 25	Tendering and Contracts	
Class 26	Commercial and Marketing Aspects of Shipbuilding and Shipping	
Class 27	Legal and Financial Aspects of Shipbuilding and Shipping	
Week 10	Regulatory Framework of Maritime Economics	
Class 28	The Regulatory Framework of Maritime Economics	
Class 29	The Regulatory Framework of Maritime Economics(continued)	
Class 30	Mid-Term Exam	
Week 11	Economics of Shipbuilding and Scrapping	
Class 31	Management Practices in Shipbuilding Projects	Mid Term,
G1 00	Environmental Considerations in Scrapping Trade	Final Exam
Class 32	11 &	
Class 32 Class 33	The Economics of Shipbuilding and Scrapping	
	11 0	
Class 33	The Economics of Shipbuilding and Scrapping	
Class 33 Week 12	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting	
Class 33 Week 12 Class 34	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction	
Class 33 Week 12 Class 34 Class 35	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting	
Class 33 Week 12 Class 34 Class 35 Class 36	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting Case Study Regarding Maritime Trade Forecasting	
Class 33 Week 12 Class 34 Class 35 Class 36 Week13	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting Case Study Regarding Maritime Trade Forecasting Maritime Market Research	
Class 33 Week 12 Class 34 Class 35 Class 36 Week13 Class 37	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting Case Study Regarding Maritime Trade Forecasting Maritime Market Research Market Research Aspects	CT 3,
Class 33 Week 12 Class 34 Class 35 Class 36 Week13 Class 37 Class 38 Class 39 Week 14	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting Case Study Regarding Maritime Trade Forecasting Maritime Market Research Market Research Aspects Data Collection	CT 3, Final Exam
Class 33 Week 12 Class 34 Class 35 Class 36 Week13 Class 37 Class 38 Class 39	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting Case Study Regarding Maritime Trade Forecasting Maritime Market Research Market Research Aspects Data Collection Presentation of Results	· · ·
Class 33 Week 12 Class 34 Class 35 Class 36 Week13 Class 37 Class 38 Class 39 Week 14	The Economics of Shipbuilding and Scrapping Maritime Trade Forecasting Study of Global Pattern of Maritime Trade for Prediction Perform Maritime Trade Forecasting Case Study Regarding Maritime Trade Forecasting Maritime Market Research Market Research Aspects Data Collection Presentation of Results Course Review	· · ·

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2	C1, C2, C4
Continuous	Assignment 1-3	2070	CO4	C3, C4
Assessment	Class	5%	CO4	
(40%)	Participation	3 70	CO4	
	Mid term	15%	CO2, CO3	C1, C2, C4
	·		CO1	C1, C2
Eine	al Exam	60%	CO2	C1, C2,C4
Pillai Exalli		0070	CO3	C4
			CO4	C4
Tota	al Marks	100%		•

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Maritime Economics Martin Stopford
- 2. Sea Transport P.M. Alderton
- 3. The geography of Transport System Jean-Paul Rodrigue
- 4. Maritime Logistics Dong Wook Song

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 453
Course Title: Power and Propulsion System
Contact Hours: 3.0
Contact Hours: 3.0

Level and Term: Level 4 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Power and Propulsion system course is designed to teach students about the concepts of ships propulsors that is different types of Engines, details of components & operation, advances in Diesel engines & Gas Turbine for marine applications, Fuel cells, Nuclear power and Wind power. This course also provides the idea of Ships Shafting system in details. Students will be able to select the suitable marine engine, shafting system and propeller for the desired ships including necessary calculations. It is expected that students will be able to analyze critically for the selection of correct machinery and propulsion system for the designed ship. Students will also be able to analyze the defects of machinery and ships shafting system while working as Marine engineer on board.

OBJECTIVE

- 1. To introduce and analyze with the working aspects of power and propulsion system of a ship;
- 2. To enable evaluating the type of ship's drive system and their relevant equipment for marine propulsion;
- 3. To enable make decision for suitable types of propeller for different ships;
- 4. To enable the knowledge in ship propulsion and drive system design;

COURSE OUTCOMES (COS)

On successful completion of this course, students should be able to:

- 1. **Describe** the different Power System for ships.
- 2. **Evaluate** the type of ship's drive system and their relevant equipment for marine propulsion.
- 3. **Decide** in selecting suitable types of propeller for different ships.
- 4. **Apply** the knowledge in ship propulsion and drive system design.

COURSE CONTENT

1. Sources of Propulsion Power

- a. Air dependent and air independent propulsion
- b. Advances in Diesel Engines for marine applications
- c. Advances in Gas Turbine for marine applications
- d. Fuel cells

- e. Nuclear power and
- f. Wind power.

2. Propulsors

- a Types of different propeller (FPP, CPP, Screw propeller, Paddle wheel etc.)
- b. Comparative studies of different propulsors, Ship power and propulsion systems
- c. Special Propulsive devices, Surface piercing
- d. Contra rotating and other special propellers.

3. Ship Drive System

- a. Straight drive,
- b. Multiple and multistage propulsion drive
- c. Universal drive, Diesel electric drive
- d. Propulsion engine and propeller matching.

4. Ship's Shafting System

- a Description of ship's shafting system
- b. Description and construction of components of shafting system
- c. Shaft alignment methods (rough and precision alignment of shaft).

5. Ship Resistance and Power Calculation

- a Frictional, Residuary and total resistance calculation
- b. Holtrop-Menon method to calculate the ship resistance.
- c. Admiralty Coefficient and fuel coefficient
- d. Power Calculation (Total power requirement for a ship)

6. Selection of Propulsor and Propulsion System

- a. Criteria for selecting the suitable propulsor.
- b. Criteria for selecting the suitable propulsion Sytsem
- c. Criteria for selecting the suitable propeller

7. Application of Marine Diesel Engine, Gas Turbine, Steam Turbine, Nuclear Power Plant.

MAPPING OF COURSE OUTCOME AND ROGRAM OUTCOME

No.	To. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)										
140.			2	3	4	5	6	7	8	9	10	11	12
CO1	Describe the different Power System for												
COI	ships												
	Evaluate the type of ship's drive system and												
CO2	their relevant equipment for marine												
	propulsion												
CO3	Decision for selecting suitable types of												
	propeller for different ships												

CO4	Apply the knowledge in ship propulsion and						
	drive system design						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the different Power System for ships	C1	1	1	1-4	CT, F
CO2	Evaluate the type of ship's drive system and their relevant equipment for marine propulsion	С3	1	1	1-4	CT/ASG, MT, F
CO3	Decision for selecting suitable types of propeller for different ships	A3	3	3	5	CT/ASG, MT, F
CO4	Apply the knowledge in ship propulsion and drive system design	A2	4	2	1-4	F

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications					
CO1-PO1	The knowledge of components to analyze the working aspects of power and					
	propulsion system of a ship					
CO2-PO2	To Evaluate the type of ship's drive system and their relevant equipment for marine					
	propulsion					
CO3-PO4	To be able to make decision for suitable types of propeller for different ships					
CO4-PO3	This is required in order to apply the knowledge in ship propulsion and drive					
	system design					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introductory class	
Class 2	Marine Engines: Thermodynamics and Types of ICE	
Class 3	Marine Engines: Major components of ICE	
Week 2	Combustion of CI &SI Engine	
Class 4	Study of CI engine: Combustion of CI engine	
Class 5	Study of CI engine: Combustion of CI engine	CT 1,
Class 6	Study of CI engine: Combustion of SI engine	Final Exam
Week 3	Low load running & Supercharging	
Class 7	Study of engine: Low load running	
Class 8	Study of engine: Effects of Low load running and methods to	
	overcome	
Class 9	Study of CI engine: Supercharging, Turbocharging, Sequential	
	Supercharging	
Week 4	Supercharging, Scavenging and Governor	
Class 10	Study of CI engine: Supercharging, Turbocharging, Sequential	
	Supercharging	
Class 11	Study of CI engine: Scavenging	CTI O
Class 12	Study of CI engine: Types of Governor, Basic Operation of Governor	CT 2,
Week 5	Gas Turbine	Final Exam
Class 13	Study of CI engine: Components & Working principle of Governor	
Class 14	Gas Turbine: Classifications, Advantage & disadvantage	
Class 15	Gas Turbine: Description of major components	
Week 6	Gas Turbine	
Class 16	Gas Turbine: Working principle of GT	
Class 17	Gas Turbine: Practical session on GT propulsion & working principle	
Class 18	Gas Turbine: Description of Compressor and combustion chamber of GT	
Week 7	Fuel Cells and Nuclear Power	
Class 19	Description of Fuel cells, Types of Fuel cells	
Class 20	Description of Nuclear power, Types of Nuclear power	
Class 21	Assessment 02	Mid Term,
Week 8	Nuclear Power and Safety	Final Exam
Class 22	Construction and Operation of ship borne nuclear System	
Class 23	Application of nuclear system on board ship	
Class 24	Safety methods	
Week 9	Wind Power	
Class 25	Description of Wind power	
Class 26	Types of wind power	
Class 27	Mid-term exam	
Week 10	Ship Resistance and Power Calculation	
Class 28	Frictional, Residuary and total resistance calculation	
Class 29	Holtrop-Menon method to calculate the ship resistance.	
Class 30	Admiralty Coefficient and fuel coefficient, Power Calculation (Total	
	power requirement for a ship)	
Week 11	Ship Drive System	Mid Term,
Class 31	Construction and operation of Wind power	Final Exam
Class 32	Ship Drive System: Straight drive, Multiple and	
Clara 22	multistage propulsion drive, Universal drive	
Class 33	Ship Drive System: Diesel electric drive, Propulsion	

	engine and propeller matching					
Week 12	Propulsor]				
Class 34	Propulsors: Comparative studies of different propulsors					
Class 35	Propulsors: Operation of FPP and CPP					
Class 36	Propulsors : Problems related to propeller					
Week13	Ship's Shafting System					
Class 37	Power transmission: Description of ship's shafting system &					
	description of components					
Class 38	Power transmission: Construction & Operation of Thrust block,					
	Plummer block, Bulkhead gland	Final Exam				
Class 39	Power transmission: Construction & Operation of Stern tube, Loose					
	coupling					
Week 14	Shaft Alignment Methods					
Class 40	Power transmission: Rough methods Shaft alignment					
Class 41	Power transmission: Precision methods of Shaft alignment					
Class 42	Assessment					

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	370	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	al Exam	60%	CO2	C1, C2,C4
1.1116	ii Exaiii	0070	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Marine Diesel Engine, (Maintenance, Troubleshooting and Repair), Nigel Calder
- 2. Pounder's Marine Diesel Engines and Gas Turbines, Doug Woodyard
- 3. Internal Combustion Engine, V Ganesan
- 4. Marine Internal Combustion Engine, A.B. Kane, MIR Publishers
- 5. Fundamentals of Ship Resistance and Propulsion, S.A. Harvard, 1983, Wiley Publishers Ltd.
- 6. Fundamentals of Ship Resistance & Propulsion, A.J.W.Lap & Ir.J.D. Van Manen,
- 7. Principles of Naval Architecture, Vol. 2
- 8. Hydrodynamics of Ship Propellers, J.P. Breslin & P. Anderson, First paperback Edition 1996, Cambridge University Press

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 463 Credit Hours: 3.00
Course Title: Ship Performance Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE

Course Code: NAME 253, NAME 403

Course Title: Marine Hydrodynamics, Dynamics of Marine Vehicles

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Ship Performance course is designed to teach students about the dynamics and performance application in ship design retrospect, namely types of ship and floating structures. Students will be able to perform necessary calculations related to the vessel performance, optimization and efficiency calculations in designing an efficient ship once the course is completed.

OBJECTIVES

- 1. To enable to impart knowledge on vessel performance parameters.
- 2. Achieving ability to familiarize the students with the principle of hull efficiency optimization and performance assessment.
- 3. To enable in being proficient to produce ships' efficiency calculations.
- 4. To enable to conduct experiments and derive parameters.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Identify** and **justify** the factors affecting the sea keeping and manoeuvrability of ships in a seaway.
- 2. **Explain** and **predict** the added resistance applying numerical methods to **investigate** the reasons for the speed and efficiency losses.
- 3. **Illustrates** the effects of hull and propeller roughness on propulsive performance.
- 4. **Apply** numerical approach to predict propeller performance and optimize the propeller design.

COURSE CONTENTS

1. Hull Roughness

- a. Hull roughness measurement, bottom condition and speed loss, propeller roughness
- b. Propeller and hull interaction
- c. Various factors for speed loss
- d. Methods of predicting resistance increase due to hull and propeller roughness

2. Momentum Analysis of Flow Round Hull

- a. Leading to wave pattern, viscous and induced resistance components
- b. Wave resistance from wave pattern measurements
- c. Methods of wave analysis

- d. Measurement of resistance due to surface shear stress and measurement of pressure drag
- e. Maximizing the propulsive efficiency of ships advances in ship performance
- f. control of the fluid flow around the hull creating resistance, interaction of the hull wake with the propulsor and optimization of the propulsor based on the operational profile of the ship.
- g. On-going advances of the International Towing Tank Conference
- h. Wake: methods of measurement, detailed wake surveys, mean wake and radial distribution; wake scale effects. Tangential wake components; influence on blade velocity diagram. Influence of tangential wake variations on propeller loading.

3. **Propeller Design**

- a. Review of theoretical approaches to propeller design including lifting surface approaches, panel methods and blade-element-momentum theories
- b. Blade-element-momentum theory, Goldstein correction factors, flow curvature effects and corrections to section design, optimum radial loading.
- c. Propeller performance at design and the use of computational fluid dynamic based approaches
- d. Wake adapted propellers
- e. Water jet efficiency and design examples using Cavitation Erosion.
- f. Added resistance due to ship motion; wave reflection, wind, yawing and drift; rudder resistance; speed loss of a ship in a seaway.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PI	RO	GF	RAI	И (OU	TC	COI	MES	(PO)
140.			2	3	4	5	6	7	8	9	10	11	12
	Identify and Justify the factors affecting the												
CO1	sea keeping and manoeuvrability of ships in a												
	seaway												
	Explain and predict the added resistance												
CO2	applying numerical methods to investigate the												
	reasons for the speed and efficiency losses.												
CO3	Illustrate the effects of hull and propeller			1									
003	roughness on propulsive performance			٧									
CO4	Apply numerical approach to predict												
	propeller performance and optimize the												
	propeller design												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	CP	CA	KP	Assessment Methods
CO1	IdentifyandJustifythefactorsaffectingtheseakeepingandmanoeuvrabilityofshipsinaseaway	C1, C5	1	1	1-4	CT, F
CO2	Explain and predict the added resistance applying numerical methods	C3, C5, C6	1	2	1-4	CT, MT, F

	to investigate the reasons for the speed					
	and efficiency losses.					
	Illustrate the effects of hull and					
CO3	propeller roughness on propulsive	C4	3	2	5	CT/ASG, F
	performance					
	Apply numerical approach to predict					
CO4	propeller performance and optimize	A5	1	1	5	MT, F
	the propeller design					

 $⁽C1-Remember,\,C2-Understand,\,C3-Apply,\,C4-Analyze,\,C5-Evaluate,\,and\,C6-Create;$

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO2	Identification with formulation of the factors affecting the sea keeping and
CO1-FO2	maneuverability of ships in a seaway will be done for designing an efficient ship.
	Students have to apply the research based knowledge to apply the numerical method
CO2-PO4	to predict and explain the added resistance to investigate the reasons for the speed
	and efficiency losses.
CO3-PO3	Knowledge of the effects of hull and propeller roughness on propulsive performance
CO3-PO3	will support practical ship design in the shipbuilding area.
CO4-PO3	Students will be able to design and optimize an efficient propeller applying
	numerical technique like CFD approach.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction to Course	
Class 2	Hull Roughness concept	
Class 3	Propeller Hull Interaction concept	
Week 2	Hull Roughness	
Class 4	Hull roughness measurement concept	
Class 5	Bottom criteria	CT 1,
Class 6	Speed loss due to hull roughness	Final Exam
Week 3	Propeller Roughness	
Class 7	Propeller roughness concept	
Class 8	Factors for interaction performance	
Class 9	Speed loss due to propeller roughness	
Week 4	Resistance Prediction	
Class 10	Concept of Resistance prediction	
Class 11	Assessment 01	
Class 12	Speed and power loss calculation due to roughness	
Week 5	Flow Around Hull	
Class 13	Flow around hull wave and momentum analysis	
Class 14	Wave Analysis and pressure drag calculation	CT 2,
Class 15	Wave reflection	Final Exam
Week 6	Propulsive Efficiency	
Class 16	Efficiency maximization concept	
Class 17	Hull wake generation	
Class 18	Calculation and analysis of wake	
Week 7	Propeller Loading	
Class 19	Propeller Loading concept	
Class 20	Wake radial distribution	
Class 21	Assessment 02	
Week 8	Blade Velocity Concept	
Class 22	Blade velocity diagram	Mid Term,
Class 23	Factors affecting blade velocity	Final Exam
Class 24	Calculation of blade velocity	
Week 9	Propeller Design	
Class 25	Theoretical approaches for propeller design	
Class 26	Blade design concept	
Class 27	Propeller efficiency factors	
Week 10	Propeller Theory	
Class 28	Panel Method	
Class 29	Blade element method	
Class 30	Mid-term exam	
Week 11	Propeller Performance	
Class 31	Flow curvature effect	Mid Term,
Class 32	Goldstein correction factors	Final Exam
Class 33	Optimum loading	

Week 12	Waterjet Performance	
Class 34	Water jet dynamics and concept	
Class 35	Water jet efficiency calculation	
Class 36	Assessment 03	
Week13	Cavitation and Speed loss	
Class 37	Speed loss calculation die to cavitation	
Class 38	Erosion measurement	
Class 39	Performance loss	CT 3,
Week 14	Course summarize	Final Exam
Class 40	Course Summary	
Class 41	Assessment results	
Class 42	Course feedback and review from students	

Components		Grading	COs	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C5, C6, C4, A5
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C5, C6, C4, A5
	Mid term	15%	CO2, CO4	C6, A5
			CO1	C5
Eine	Final Exam		CO2	C6
FIII	ai exaiii	60%	CO3	C4
			CO4	A5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Ship Performance C. N. Hughes
- 2. Ship Performance: Some Technical and Commercial Aspects C. N. Hughes
- 3. Ship Design and Performance for Masters and Mates Bryan Barras
- 4. Assessment of Ship Performance in a Seaway Nordforsk
- 5. The Maritime Engineering Reference Book: A Guide to Ship Design Anthony F. Molland

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 465 Credit Hours: 3.00 Course Title: Navigation and Maritime Regulations Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Marine Safety and Pollution course is designed to teach students about the maritime regulations, marine safety rules, pollution regulations theory, namely types of ship and floating structures. Students will be able to perform necessary calculations related to the basic design, freeboard, trim and stability calculations using established formulas once the course is completed.

OBJECTIVES

- 1. To provide basic concepts of maritime boundaries, design and operational safety regulations.
- 2. To know about various tidal sequences, zones, pollution regulations in the marine industry.
- 3. To analyze and design various vessels using freeboard and other mandatory regulatory based calculations.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** the concept of freeboard calculation and **Identify** different factors and navigational aids for safe operation of the vessel.
- 2. **Construct** a regulatory database and **apply** safety regulations in vessel design calculation.
- 3. **Explain** tide and tidal formation as well as **justify** a vessel design in tidal application.
- 4. **Assist** marine industry for surveying and registration of ships based on life saving appliances.

COURSE CONTENTS

1. Outline of Navigation, Navaid and Tide

- a. Outline of navigation
- b. Navigational aids and aids to navigation
- c. Tide and tidal theory

2. International Rules and Freeboard:

- a. International conventions on loadline
- b. Freeboard calculation
- c. International Maritime Organizations (IMO)
- d. law of the seas,

- e. The International Convention for the Prevention of Pollution from Ships (MARPOL)
- f. The International Convention for the Safety of Life at Sea (SOLAS)
- g. International Regulations for Preventing Collisions at Sea (COLREG)

3. Inland Rules

- a. Merchant shipping act
- b. inland shipping ordinance 1976
- c. Marine fishers' ordinance 1983
- d. Inland lifesaving rules 2001

4. Marine Pollution

- a. Pollution and pollutants
- b. MARPOL and legal instrument
- c. Ship breaking in Bangladesh
- d. Green Ship Technology

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (POs)											
110.	No. COURSE OUTCOMES (COs)		2	3	4	5	6	7	8	9	10	11	12
CO1	Describe the concept of freeboard calculation and Identify different factors and navigational aids for safe operation of the vessel.	V											
CO2	Construct a regulatory database and apply safety regulations in vessel design calculation.	V											
CO3	Explain tide and tidal formation as well as Justify a vessel design in tidal application.			√									
CO4	Assist marine industry for surveying and registration of ships based on life saving appliances.		V										

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the concept of freeboard calculation and Identify different factors and navigational aids for safe operation of the vessel.	C1	1	1	1-4	CT, F
CO2	Construct a regulatory database and apply safety regulations in vessel design calculation.	С3	1	1	1-4	CT/ASG, F
CO3	Explain tide and tidal formation as well as Justify a vessel design in tidal application.	A3	3	3	5	CT/ASG, MT, F

	Assist marine industry for surveying					
CO4	and registration of ships based on life	A2	4	2	1-4	MT, F
	saving appliances.	AZ				
(C1 -	Remember, C2 – Understand, C3 – Apply,	C4 – Analyze,	C5 –	Evalu	ate, an	d C6 – Create;
CP- 0	Complex Problems, CA-Complex Activities, I	KP-Knowledge	Profil	e, T –	Test, F	PR – Project, Q
- Qu	iz, ASG – Assignment, Pr – Presentation, R –	Report, F - Fin	al Exa	am, M	T- Mid	Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of binary mathematics and science has to be applied to
	understand basic computer programming concepts
CO2-PO1	To construct a pseudocode and apply the knowledge in programming,
	understanding of flow chart and algorithm concepts is required.
CO3-PO3	To be able to explain and justify a program, understanding detailed
	programming concepts is required.
CO4-PO2	This is required in order to conduct any investigation of complex problems
	related to computer programing architecture.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	
Week 1	Outline of Navigation, NAVAID	CT 1,
Class 1	Introduction to the Course, Assessment Procedure	Final
Class 2	General and Basic Outline of Navigation	Exam
Class 3	Navigational Aids & Aids to Navigation	
Week 2	NAVAID Segment 2	
Class 4	Aids to Navigation	

Class 5	Navigational Math – class 1	
Class 6	Navigational Math – class 2	
Week 3	Tide and Tidal Theory	
Class 7	Tide basic definitions	
Class 8	Tidal Theories	
Class 9	Assessment 01/Assignment 01	
Week 4	International Load Line Rules	CT 1,
Class 10	International Conventions on Load line	Final
Class 11	Freeboard Regulations and initial concept	Exam
Class 12	Guidelines on Freeboard Calculation	
Week 5	Freeboard Calculation	
Class 13	Freeboard Calculation – Class 1	
Class 14	Freeboard Calculation – Class 2	
Class 15	Freeboard Calculation – Class 3 (On Class Practice)	
Week 6	International Regulatory Bodies	
Class 16	International Maritime Organizations (IMO) – Class 1	
Class 17	International Maritime Organizations (IMO) – Class 2	
Class 18	Law of The Seas – Class 1	
Week 7	International Regulatory Bodies	
Class 19	Law of The Seas – Class 2	
Class 20	Midterm Exam	
Class 21	MARPOL	
Week 8	International Regulatory Bodies	Mid
Class 22	SOLAS – Class 1	Term,
Class 23	SOLAS – Class 2	Final
Class 24	COLREG- Class 1	Exam
Week 9	International Regulatory Bodies	
Class 25	COLREG- Class 2	
Class 26	Safe Marine Vessel Operation	
Class 27	Summary of International Regulatory Bodies	
Week 10	Inland Regulatory Bodies	
Class 28	Introduction to Inland Rules	
Class 29	Assessment 02/Assignment 02	
Class 30	Inland Life Saving Rules 2001	
Week 11	Inland Rules	
Class 31	Marchant Shipping Act	
Class 32	Inland Shipping Ordinance 1976	
Class 33	Marine Fishers Ordinance 1983	
Week 12	Marine Pollution	CT 3,
Class 34	Pollutions	Final Exam
Class 35	Pollutants and their effect	
Class 36	Assessment -3	
Week 13	Ship Breaking and MARPOL	
Class 37	MARPOL and Legal Instrument	
Class 38	Ship Breaking in Bangladesh	
Class 39	Green ship Technology	
Week 14	Course Summarization	
Class 40	Course summary	
Class 41	Assessment Result	

Class 42	Student Feedback	

Com	ponents	Grading	COs	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3	C1, C3, A3
Assessment (40%)	Class 5%		CO1, CO2, CO3, CO4	C1, C3, A3, A2
	Mid term	15%	CO2, CO3	A3, A2
			CO1	C1
Fin	Final Exam		CO2	C3
Fina	ai Exam	60%	CO3	A3
			CO4	A2
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Marine Pollution by R B Clark
- 2. Marine Pollution by Judith S Weis
- 3. Prevention of pollution of environment form marine vessel, Saiful Karim

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 477 Credit Hours: 3.00
Course Title: Control Engineering Contact Hours: 3.00

Level and Term: Level 4 Term 2

PRE-REQUISITE

Course Code: EECE 281

Course Title: Marine Electrical and Electronics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is designed to provide theoretical as well as conceptual understanding on control systems with especial attention to on-board machinery and systems for marine environment. Obviously, it will help the naval architecture and marine engineering graduates to perform the duties properly during installations and operations of marine equipment and systems at shipyard, dockyard and fleet with certain level of confidence.

OBJECTIVES

- 1. To introduce the students with the basic concepts of control system functions and design.
- 2. To enable the students in implementing and testing dynamic system models
- 3. To enable the students to interpret dynamic system models with sufficient mathematical reasoning.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the issues of control engineering as dynamic system models.
- 2. **Apply** the concepts of control engineering for ship borne machineries and systems.
- 3. **Select** appropriate dynamic control models for different classes of control design problems.
- 4. **Design** control modules in line with ship machineries.

COURSE CONTENTS

1. Introduction to theory of controls

- e. Concepts of mechanical, hydraulic, pneumatic, thermal and electro-mechanical controls
- f. Different modes and methods of control systems and their representation by different equations
- g. Laplace transforms, transfer functions and characteristic functions,
- h. Stability, Routh's criterion for stability.

2. Block diagrams and signal flow graphs

- a. Physical systems modelling
- b. Root locus analysis
- c. Time domain and frequency domain analysis of control systems.

3. Useful problem and solution of a simple level control

a. Flow control, pressure control and temperature control of a physical system.

4. Computer solution of system equations

- a. System response, control action and system types
- b. System compensation, analogues of control system
- c. application of servomechanisms on-board systems for steering, stabilizer etc.
- d. Introduction to digital computerized control and simple control development using software.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)											
110.	COURSE OUTCOMES (COS)	1	1 2 3 4		4	5	6	7	8	9	10	11	12
CO1	Explain the issues of control engineering	V											
COI	as dynamic system models.	\ \	`										
CO2	Apply the concepts of control engineering		V										
CO2	for ship borne machineries and systems		\ \										
	Select appropriate dynamic control models												
CO3	for different classes of control design												
	problems.												
CO4	Design control modules in line with ship						V						
CO4	machineries						٧						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the issues of control	C2	2	A1	1-4	CT, F
	engineering as dynamic system					
	models.					
CO2	Apply the concepts of control	C4	3	A1	1-5	CT, MT, F
	engineering for ship borne					
	machineries and systems					
CO3	Select appropriate dynamic control	C6	3	A2	5-7	CT/ASG, F
	models for different classes of					
	control design problems.					
CO4	Design control modules in line with	A3	6	A2	5-7	MT, F
	ship machineries					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

CO1-PO1	The knowledge of science has to be applied to understand and address the control
	phenomena for marine use.
CO2-PO2	In order to identify control and monitoring mechanisms in general and apply it for
	the ship borne systems for propulsion, power generation and auxiliary operations.
CO3 –PO5	Creating and applying appropriate mathematical tools for both open and closed loop
	control systems.
CO4 –PO6	Designing the controls for steering, stabilizer and fire fighting systems on board
	ships.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1 & 2	Introduction to the Theory of Controls	
Class 1	Concepts of mechanical, hydraulic, pneumatic, thermal and	
	electro-mechanical controls	
Class 2	Different modes and methods of control systems and their	
Class 3	representation by different equations	
Class 4	Laplace transforms, transfer functions and characteristic functions,	
Class 5	stability, Routh's criterion for stability	CT 1,
Class 6		Final Exam
Week 3 & 4	Block diagrams and signal flow graphs	
Class 7	Physical systems modeling, root locus analysis	
Class 8		
Class 9	Time domain and frequency domain analysis of control systems	
Class 10		
Class 11	Steady state frequency response and stability margins	
Class 12		

Week 5 & 6	Useful problem and solution of a simple level control	
Class 13	Flow control, pressure control and temperature control of a	CT 2,
Class 14	physical system	Final Exam
Class 15	State feedback pole placement design	
Class 16	1	
Class 17	State space modelling of discrete time linear systems	
Class 18	7	
Week 7 & 8	Computer solution of system equations	M: 1 T
Class 19	System response, control action and system types	Mid Term,
Class 20]	Final Exam
Class 21	System compensation, analogues of control system, application of	
Class 22	servomechanisms onboard systems for steering, stabilizer etc	
Class 23	Transformation of system models with MATLAB	
Class 24	7	
Week 9 & 10	Control System Analysis and Design by the	
	Frequency-Response Method	
Class 25	Bode diagrams, polar plots, Nyquist stability criterion	
Class 26]	Final Exam
Class 27	Log-magnitude-versus-phase plots	Fillal Exalli
Class 28	7	
Class 29	Lead compensation, lag compensation, lead-lag compensation	
Class 30]	
Week 11 & 12	Control System Design in State Space	
Class 31	Design of regulator systems with observers	
Class 32		
Class 33	Quadratic optimal regulator systems	
Class 34		
Class 35	Robust control systems	
Class 36]	CT 3,
Week 13 & 14	PID Controllers and Modified PID Controllers	Final Exam
Class 37	Ziegler-Nichols rules for tuning PID controllers, design of PID	
Class 38	controllers with frequency response approach	
Class 39	Design of PID controllers with computational optimization	
	approach	
Class 40	Revision class-1	
Class 41	Revision class-2	
Class 42	Assessment	

Com	ponents	Grading	COs	Blooms Taxonomy		
Continuous	Class Test/	20%	CO1, CO2, CO3	C2, C4, C6		
Continuous Assessment	Assignment 1-3	2070	CO3	C6		
(40%)	Class Participation	5%	CO1-CO4	C2, C4, C6		

	Mid term	15%	CO2, CO4	C4, A3
			CO1	C2
Fine	Final Exam		CO2	C4
1.1116			CO3	C6
			CO4	A3
Tota	ıl Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Modern Control Engineering Ogata, Katsuhiko.
- 2. Control Engineering: An Introduction with the Use of MATLAB Derek Atherton
- 3. Reed's Marine Engineering Series: Volume 10: Instrumentation and Control Systems Jackson, Leslie
- 4. Control Engineering: Theory and Practice Bandyopadhyay, M N
- 5. Control Engineering V U Bakshi and U A Bakshi

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 481 Credit Hours: 3.00
Course Title: Optimization Methods in Ship Design Contact Hours: 3.00

Level and Term: Level 4 Term 2

RE-REQUISITE

Course Code: NAME 363

Course Title: Numerical Methods

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This optional theoretical course will introduce the students to the basic fundamentals of optimization methods that can be used during a design process. Considering the computational aspect of the subject especially in higher dimensions, the course will involve significant amount of computational assignments and a term project in the general area of engineering optimization. At the end of the course students will develop critical thinking and learn to frame engineering minima maxima problems in the framework of optimization problems.

OBJECTIVES

- 1. To enable the students to enumerate the fundamental knowledge of Linear Programming and Dynamic Programming problems.
- 2. To enable the students to learn classical optimization techniques and numerical methods of optimization.
- 3. To enable the students to know the basics of different evolutionary algorithms.
- 4. To enable the students to explain Integer programming techniques and apply different optimization techniques to solve various models arising from engineering areas.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the fundamental knowledge of Linear Programming and Dynamic Programming problems.
- 2. **Describe** the basics of different evolutionary algorithms.
- 3. **Apply** the theoretical concepts and knowledge of optimization method in analysis, design, and development of ship design.
- 4. **Enumerate** fundamentals of Integer programming technique and apply different techniques to solve various optimization problems arising from various engineering problem as well as ship design.

COURSE CONTENTS

- 1. **Introduction to linear programming:** construction of the LP model, graphical LP solution, slack, surplus and unrestricted variables.
- 2. **The simplex method:** standard LP form, the simplex algorithm, the M-method, the two-phase method, special cases in simplex method application.

- 3. **Duality and sensitivity analysis:** Definition of the dual problem, relationship between the optimal primal and dual solutions, dual simplex method, Integer linear programming: B & B algorithm, cutting plane algorithm.
- 4. **Nonlinear Programming:** unconstrained problem, constrained problem: Jacobian method, Lagrangean method, Kuhn-Tucker conditions.
- 5. **Numerical techniques for unconstrained optimization:** The Newton-Raphson method, direct search method, steepest ascent method.
- 6. **Numerical techniques for constrained optimization:** sequential linear programming (SLP), sequential quadratic programming (SQP), sequential unconstrained minimization techniques (SUMT)
- 7. **Modern methods of optimization:** Genetic algorithm, simulated annealing, particle swarm optimization, ant colony optimization.
- 8. **Project scheduling:** project development, critical path method, optimum scheduling by critical path method.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)										
140.	COURSE OUTCOMES (COS)	1	1 2 3 4 5 6 7 8 9 1				10	11	12			
CO1	Explain the fundamental knowledge of Linear Programming and Dynamic		V									
	Programming problems.											
CO2	Describe the basics of different evolutionary algorithms.											
CO3	Apply the theoretical concepts and knowledge of optimization method in analysis, design, and development of ship design.			1								
CO4	Enumerate fundamentals of Integer programming technique and apply different techniques to solve various optimization problems arising from various engineering problem as well as ship design.											√

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the fundamental knowledge of Linear Programming and Dynamic Programming problems.	C4			1-4	CT, F
CO2	Describe the basics of different evolutionary algorithms.	C2			1-4	CT, MT, F
CO3	Apply the theoretical concepts and knowledge of optimization method in analysis, design, and development of ship design.	C3,C4	3		5	CT/ASG, F

CO4 programming technique and apply different techniques to solve various optimization problems arising from the program and apply different techniques to solve various optimization problems arising from the program are problems as well as		Enumerate fundamentals of Integer					
ship design.	CO4	programming technique and apply different techniques to solve various optimization problems arising from various engineering problem as well as	C5	1	3	8	MT, F

 $C1-Remember,\ C2-Understand,\ C3-Apply,\ C4-Analyze,\ C5-Evaluate,\ and\ C6-Create;$

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO2	The knowledge of mathematical principles will help the students to apply the same
	to formulate solutions for engineering problems
CO2-PO2	Different computational problems can be identified, formulated, explained, reviewed
	and conclusions can be reached.
CO3-PO3	Theoretical concepts and knowledge of optimization method will help the students to
	analysis, design, and development of ship design as well as other related engineering
	problems.
CO4-PO12	Students will be able to identify the complexity of various design optimization
	related problem in their professional lifesup and find out optimization technique to
	solve them.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

Q-Quiz, ASG-Assignment, Pr-Presentation, R-Report, $F-Final\ Exam$, $MT-Mid\ Term\ Exam$)

Week	Contents	Assessment
Week 1 & 2	Introduction	
Class 1	Introduction to linear programming	
Class 2	Construction of the lp model, graphical lp solution,	
Class 3		
Class 4	Slack, surplus and unrestricted variables.	
Class 5	1	
Class 6		CT 1,
Week 3 & 4	The simplex method	Final Exam
Class 7	Standard LP form, the simplex algorithm, the M-method	
Class 8	1	
Class 9	The two-phase method	
Class 10		
Class 11	Special cases in simplex method application	
Class 12		
Week 5 & 6	Duality and sensitivity analysis	
Class 13	Definition of the dual problem, relationship between the optimal	CT 2,
Class 14	primal and dual solutions	Final Exam
Class 15	Dual simplex method, integer linear programming	
Class 16		
Class 17	B & b algorithm, cutting plane algorithm	
Class 18		
Week 7 & 8	Nonlinear programming	
Class 19	Unconstrained problem	Mid Term, Final
Class 20	-	Exam
Class 21	Constrained problem: Jacobian method, Lagrangean method,	
Class 22	Kuhn-tucker conditions.	
Class 23	Lagrangean method, Kuhn-tucker conditions.	
Class 24		
Week 9 & 10	Numerical techniques for unconstrained optimization	
Class 25	The Newton-Raphson method	
Class 26]	
Class 27	Direct search method	
Class 28		
Class 29	Steepest ascent method.	
Class 30	7	
Week 11 & 12	Numerical techniques for constrained optimization	
Class 31	Sequential linear programming (slp)	
Class 32		
Class 33	Sequential quadratic programming (sqp)	
Class 34		
Class 35	Sequential unconstrained minimization techniques (sumt)	
Class 36	1	CT 3,
i .	1	Final Exam

Class 37	Genetic algorithm	
Class 38		
Class 39	Simulated annealing, particle swarm optimization	
Class 40		
Class 41	Ant colony optimization.	
Class 42	Review	

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C6, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	al Exam	60%	CO2	C1, C2,C4
17116	ai Exaiii	0070	CO3	C4
			CO4	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Hamdy A Taha: Operations Research: An Introduction, Tenth Edition, Prentice Hall of India, 2016.
- 2. P. Venkataraman: Applied Optimization with MATLAB Programming, John Wiley & Sons, Inc. New York, 2002
- 3. Singiresu S. Rao: Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley & Sons, Inc. New York, 2009.
- 4. S. R. Yadav and A. K. Malik: Operations Research, Oxford University Press, 2014.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 483 Credit Hours: 3.00
Course Title: Theory of Hydrofoils Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE

Course Code: NAME 353

Course Title: Ship Resistance and Propulsion

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Theory of Hydrofoils course is designed to teach students hydrofoil shapes and enrich their pertinent knowledge. Students will be able to perform necessary calculations related to hydrofoils which will improve the vessel performance, optimization and efficiency calculations once the course is completed. It is expected that students will develop critical thinking about how to contrast & justify speed affecting factor, categorize & relate reasons of speed thus solves efficiency related error calculation.

OBJECTIVES

- 1. To impart knowledge on hydrofoils.
- 2. To familiarize the students with the theory of hydrofoils that enhance the hull efficiency, optimization and performance.
- 3. To make proficient to produce ships' efficiency calculations.
- 4. To enable to conduct experiments and derive parameters.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Contrast** and **Justify** the factors affecting the speed and efficiencies of ships.
- 2. Categorize and Relate reasons for the speed and efficiency due to hydrofoils.
- 3. **Illustrates** the effects of hydrofoils on propulsive performance.
- 4. **Display** and **Solve** efficiency related error calculations.

COURSE CONTENTS

- 1. Definition and geometry of hydrofoils.
- 2. Introduction to the fundamentals of lifting surfaces related to the selection, design, experimental and numerical modelling, as well as optimization of hydrofoils, propellers, and turbines.
- 3. Analytic investigation of flow past a hydrofoil
- 4. Theory of thin hydrofoils.
- 5. Theory of hydrofoils having arbitrary shapes.
- 6. 2-D and 3- D hydrofoils
- 7. Design and analysis of hydrofoil sections
- 8. Cavitating hydrofoils
- 9. Application of hydrofoils to high-speed craft, control surface and propeller.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Contrast and Justify the factors affecting the	V											
COI	speed and efficiencies of ships	\ \											
CO2	Categorize and Relate reasons for the speed		1										
	and efficiency due to hydrofoils		V										
CO3	Illustrates the effects of hydrofoils on			٦/									
COS	propulsive performance			V									
CO4	Displays and Solves efficiency related errors			٦/									
	calculation			V									

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Contrast and Justify the factors affecting the speed and efficiencies of ships	C5	1	1	1-4	CT, F
CO2	Categorize and Relate reasons for the speed and efficiency due to hydrofoils	C6	1	2	1-4	CT, MT, F
CO3	Illustrates the effects of hydrofoils on propulsive performance	C4	3	2	5	CT/ASG, F
CO4	Displays and Solves efficiency related errors calculation	A5	1	1	5	MT, F

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	Details knowledge of mathematics and science has to be applied to calculate
	performance parameters and develop the effects of change related to hydrofoils.
CO2-PO2	Students will learn the reasons of speed and efficiency variance due to hydrofoils and
	how to categorize & relate those.
CO3-PO3	Fundamental idea about propulsive performance and the relation & effects of
	hydrofoils on this.
CO4-PO3	Know about efficiency errors, and how to calculate, display & solve them.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

 $Q-Quiz,\, ASG-Assignment,\, Pr-Presentation,\, R-Report,\, F-Final\, Exam,\, MT-\, Mid\, Term\, Exam)$

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction	
Class 2	Definition of hydrofoils	
Class 3	Geometry of hydrofoils	
Week 2	Fundamentals of lifting surfaces related to the selection of hydrofoils	
Class 4	Introduction to the fundamentals of lifting surfaces related to the selection	
	of hydrofoils	CT 1,
Class 5	Fundamentals of lifting surfaces related to the design of hydrofoils	Final Exam
Class 6	Fundamentals of lifting surfaces related to the design of hydrofoils	
Week 3	Fundamentals of lifting surfaces of hydrofoils	
Class 7	Fundamentals of lifting surfaces related to the experimental and numerical	
	modeling of hydrofoils	
Class 8	Fundamentals of lifting surfaces related to the selection, design,	
	experimental and numerical modeling, as well as optimization of	
	hydrofoils, propellers, and turbines.	
Class 9	Fundamentals of lifting surfaces related to the selection, design,	
	experimental and numerical modeling, as well as optimization of	
	hydrofoils, propellers, and turbines.	
Week 4	Optimization of hydrofoils	
Class 10	Fundamentals of lifting surfaces related to the selection, design,	
	experimental and numerical modeling, as well as optimization of	
	hydrofoils, propellers, and turbines.	
Class 11	Analytic investigation of flow past a hydrofoil	
Class 12	Analytic investigation of flow past a hydrofoil	
Week 5	Analytic investigation of flow past hydrofoil	CT 2,
Class 13	Analytic investigation of flow past a hydrofoil	

Class 14	Analytic investigation of flow past a hydrofoil	Final Exam
Class 15	Assessment	
Week 6	Analytic investigation of flow past a hydrofoil	
Class 16	Analytic investigation of flow past a hydrofoil	
Class 17	Analytic investigation of flow past a hydrofoil	
Class 18	Analytic investigation of flow past a hydrofoil	
Week 7	Theory of thin hydrofoils	
Class 19	Review of previous topics	
Class 20	Theory of thin hydrofoils	
Class 21	Theory of thin hydrofoils	
Week 8	Theory of thin hydrofoils	
Class 22	Theory of thin hydrofoils	Mid Term,
Class 23	Theory of thin hydrofoils	Final Exam
Class 24	Assessment	1 2
Week 9	Theory of hydrofoils having arbitrary shapes	
Class 25	Theory of hydrofoils having arbitrary shapes	
Class 26	Theory of hydrofoils having arbitrary shapes.	
Class 27	2-D and 3- D hydrofoils	
Week 10	2-D and 3- D hydrofoils	
Class 28	2-D and 3- D hydrofoils	
Class 29	Design of hydrofoil sections	
Class 30	Mid-term exam	
Week 11	Design and analysis of hydrofoil sections	
Class 31	Design and analysis of hydrofoil sections	Mid Term,
Class 32	Cavitating hydrofoils	Final Exam
Class 33	Assessment	
Week 12	Cavitating hydrofoils	
Class 34	Cavitating hydrofoils	
Class 35	Cavitating hydrofoils	
Class 36	Cavitating hydrofoils	
Week13	Application of hydrofoil	
Class 37	Review of previous topic	
Class 38	Application of hydrofoils to control surface	
Class 39	Application of hydrofoils to propeller	CT 3,
Week 14	Application of hydrofoil	Final Exam
Class 40	Application of hydrofoils to high-speed craft	
Class 41	Assessment	
Class 42	Course review	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C5, C6, C4, A5
(40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C5, C6, C4, A5

	Mid term	15%	CO2, CO4	C6, A5		
			CO1	C5		
Fine	ol Evom	60%	CO2	C6		
Final Exam		0070	CO3	C5		
			CO4	A5		
Tota	ıl Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Hydrofoils, Design, Build, Fly Ray Vellinga
- 2. Theory of wing section Abbott and Doenhoff
- 3. Hydrofoil without formula series Hook and Karmode
- 4. Lift and drag of hydrofoils: Application of theory to experimental results Korvin-Kroukovosky

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 489 Credit Hours: 3.00
Course Title: Introduction to Offshore Structure Contact Hours: 3.00

Level and Term: Level 4, Term 2

PRE-REQUISITE
Course Code: None
Course Title: None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The aim of this optional theoretical course is to provide the students with the complete and up-to-date overview of offshore structure. This course will enable students to gain knowledge of different types of offshore structures, their design characteristics, environmental loads on them, stationkeeping etc. This course also deals with the suitability of particular type of offshore platforms in Bangladesh.

OBJECTIVES

- 1. Enable students to identify different types of offshore structures and their characteristics.
- 2. To be able to estimate environmental (wind, wave and current) loads on both fixed and floating type of offshore structures.
- 3. To be able to design mooring system for floating offshore structures.
- 4. To select a particular type of offshore structure suitable for offshore areas of Bangladesh.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. To **comprehend** and **distinguish** design characteristics of different types of offshore structures.
- 2. To be able to **compute** environmental loads on offshore structures.
- 3. To **design** mooring system for floating offshore structures.
- 4. To **appraise** safety features of offshore structures.

COURSE CONTENTS

- 1. **Introduction**: Challenges in offshore environment, Types of offshore structures, Typical motion characteristics of offshore structures, important seakeeping and wave load problems.
- 2. **Types of offshore structures** Fixed offshore structures: jacket, jackup, TLP and gravity platforms, Floating offshore platforms: Semi-submersible, drill ships
- 3. **Loads on offshore structure** Types of loads on offshore structures, Hydrodynamic classification of structures.
- 4. Wave loads on offshore structures Wave theories and their uses, Assumption of linear (Airy) Wave theory, Difference between linear and non-linear wave theory, Wave particle orbit and velocity, Horizontal velocity and pressure distribution in linear and non-linear wave theory, Time domain vs. frequency domain, wave spectrum: P-M, JONSWAP spectrum, Creation of an irregular wave from a wave spectrum, Assumption of potential flow, dynamic pressure, Wave

breaking, Wave excitation loads: Froude-Kriloff and diffraction forces and moments. Added mass, damping and restoring terms, Morison 's equation and its application for Wave Load problems.

- 5. **Wind and Current loads on Offshore Structures** Wind speed profiles, Turbulence, Wind spectra, Wind pressure, Effect of current, Types of Current, Current velocity sunniest profile
- 6. **Design of Fixed offshore Structures** Introduction to fixed offshore structures: Sizing & layout, Design of Jacket Structures, Base shear, Over-turning moment and buckling in Jacket structures, Design of TLP structures: Tension in tethers, restoring forces, Design of spar platforms.
- 7. **Design of Floating Offshore Structures** General Arrangement and sizing of a semisubmersible platform, Hydrodynamic features of floating offshore platforms, Stability requirement of floating offshore platforms, Problem solving, General Arrangement and design characteristics of a drill ship, Hydrodynamic features of a drillship.
- 8. **Fatigue of offshore structures** Basic concepts, fatigue in offshore structures, Fatigue damage assessment, Effect of salinity and temperature on fatigue, S-N Curves.
- 9. **Buoy and Mooring system of Offshore Structures** Station keeping: mooring, thruster forces and dynamic positioning, Assumption and derivation of catenary mooring equation, Problem solving on minimum length of a catenary mooring.
- 10. **Safety of Offshore Structures** Life cycle phases of an offshore structure, causes of structural failures and risk reduction measures, Accidental experiences and lesson learned.
- 11. **Offshore Structures for Bangladesh** Suitability of Offshore Structures for Bangladesh.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	No. COURSE OUTCOMES (COs)			PROGRAM OUTCOMES (PO))			
140.	COURSE OUT COMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	To comprehend and distinguish design												
CO1	characteristics of different types of offshore												
	structures												
CO2	To be able to demonstrate environmental				1								
CO2	loads on offshore structures				V								
CO3	To design mooring system for floating			1									
CO3	offshore structures												
CO4	To appraise safety features of offshore												
CO4	structures.						٧						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	CP	CA	KP	Assessment
		Taxonomy				Methods
	To comprehend and distinguish	C2	1		1-4	CT, F
CO1	design characteristics of different types					
	of offshore structures.					
	To be able to demonstrate	C3	1		8	CT, Mid
CO2	environmental loads on offshore					Term, F
	structures.					

CO3	To design mooring system for floating	C6	2	5	CT/ASG, F
003	offshore structures.				
CO4	To appraise safety features of offshore	C5	5	7	Mid Term, F
CO4	structures.				

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO2	The knowledge of mathematics and science has to be applied to calculate hydrostatic
	parameters and develop the effects of draught change on them.
CO2-PO4	In order to identify the role and extent of hydrostatic parameters on the principles of
	intact and damage stability of ships.
CO3-PO3	To analyze vessels' hydrostatic and hydrodynamic parameters for docking and
	launching calculations.
CO4-PO6	In order to ascertain the level of stability of the vessel and maintenance of upright
	position at lightship/ designated loading conditions.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Week Contents				
Week 1	Introduction				
Class 1	Introduction, course administration and motivation lecture	1			
Class 2	Challenges in offshore environment, Types of offshore structures				

286

Class 3	Typical motion characteristics of offshore structures, important	
Wools 2	seakeeping and wave load problems	
Week 2 Class 4	Types of offshore structures Fixed offshore structures: jacket, jackup, TLP and gravity platforms.	CT 1,
Class 4 Class 5	Floating offshore platforms: Semi-submersible, drill ships	Final Exam
Class 5 Class 6	Floating offshore platforms: Senn-submersible, drift ships	I mai Exam
Week 3	Loads on offshore structure	
Class 7	Types of loads on offshore structures	
	1 =	
Class 8	Hydrodynamic classification of structures Class Test-1	
Class 9		
Week 4	Wave loads on offshore structures	
Class 10	Wave theories and their uses, Assumption of linear (Airy) Wave theory, Difference between linear and non-linear wave theory.	
Class 11	Wave particle orbit and velocity, Horizontal velocity and pressure	
	distribution in linear and non-linear wave theory	
Class 12	Time domain vs. frequency domain, wave spectrum: P-M, JONSWAP	
	spectrum, Creation of an irregular wave from a wave spectrum	CT 2,
Week 5	Wave loads on offshore structures	Final Exam
Class 13	Assumption of potential flow, dynamic pressure, Wave breaking	
Class 14	Wave excitation loads: Froude-Kriloff and diffraction forces and	
Class 15	moments. Added mass, damping and restoring terms.	
Class 15 Week 6	Morison 's equation and its application for Wave Load problems. Wind and Current loads on Offshore Structures	
Class 16	Wind speed profiles, Turbulence, Wind spectra, Wind pressure	
Class 17	Effect of current, Types of Current, Current velocity sunniest profile	
Class 18	Class Test-2	
Week 7	Design of Fixed offshore Structures	
Class 19	Introduction to fixed offshore structures: Sizing & layout	
Class 20	Design of Jacket Structures	
Class 21	Base shear, Over-turning moment and buckling in Jacket structures	
Week 8	Design of Fixed offshore Structures	
Class 22	Mid Term Exam	Mid Term,
Class 23	Design of TLP structures: Tension in tethers, restoring forces.	Final Exam
Class 24	Design of spar platforms	
Week 9	Design of Floating Offshore Structures	
Class 25	General Arrangement and sizing of a semi-submersible platform	
Class 26	Hydrodynamic features of floating offshore platforms	
Class 27	Stability requirement of floating offshore platforms	
Week 10	Design of Floating Offshore Structures	
Class 28	Problem solving Congret Arrangement and design characteristics of a drill ship	
Class 29	General Arrangement and design characteristics of a drill ship	
Class 30	Hydrodynamic features of a drillship	
Week 11	Fatigue of offshore structures	Mid Term,
Class 31	Basic concepts, fatigue in offshore structures	Final Exam
Class 32	Fatigue damage assessment, Effect of salinity and temperature on fatigue	
Class 33	S-N Curves	
Week 12	Buoy and Mooring system of Offshore Structures	
Class 34	Stationkeeping: mooring, thruster forces and dynamic positioning	
Class 35	Assumption and derivation of catenary mooring equation	
Class 36	Problem solving on minimum length of a catenary mooring.	
Week13	Safety of Offshore Structures	
Class 37	Class Test-3	

Class 38	Life cycle phases of an offshore structure, causes of structural failures	
	and risk reduction measures	CT 3,
Class 39	Accidental experiences and lesson learned.	Final Exam
Week 14	Offshore Structures for Bangladesh	
Class 40	Suitability of Offshore Structures for Bangladesh	
Class 41	Course review (Lec - 01 ~ Lec 21)	
Class 42	Course review (Lec - 22 ~ Lec 42)	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	20%	CO3	C3, C4
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C6, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2
Eine	1 Evom	CO2	CO2	C1, C2,C4
Final Exam		60%	CO3	C4
			CO4	C4
Tota	al Marks	100%		

⁽CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Offshore Engineering: An Introduction by Angus Mather
- 2. Sea Loads on Ships and Offshore Structures by Odd Magnus Faltinsen
- 3. Construction of marine and offshore structure, Ben C Gerwick Jr.
- 4. Elements of ocean Engineering. Dr. Ashoke Bhar
- 5. Introduction to offshore structures, Design, fabrication, Installation, W.J.Geatt
- 6. Safety of offshore structures by Torgeir Moan
- 7. DNVGL RP-C205, Environmental conditions and Environmental Loads

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 493 Credit Hours: 3.00
Course Title: Marine Acoustics Contact Hours: 3.00

Level and Term: Level 4 Term 1/2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Marine Acoustics is an optional theoretical course which is designed to impart students the fundamental knowledge about ocean engineering sonar system design with basic acoustic experiments. Students will understand the mechanism of underwater sound propagation system and processing unit by which they can gain the skill of solving equations for estimating necessary velocity parameters.

OBJECTIVES

- 1. To provide the basic and applied knowledge of underwater sound generation, propagation and reception.
- 2. To enable to achieve understanding of the sonar equation and basic signal processing concepts essential to sonar system design.
- 3. To familiarize with the design of basic sonar systems and basic ocean acoustic experiments.
- 4. To familiarize with various sources of ambient noise in the sea.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the fundamentals of sound propagation, sound of seismic, ships, wind and rain, bioacoustics.
- 2. **Identify** the effects of sound in ocean dynamics, and imaging and mapping the seafloor.
- 3. **Devise** the skill to formulate the combined forward/inverse problem, from tracing ray
- 4. **Estimate** sound levels to solve equations for rainfall or current velocity.

COURSE CONTENTS

- 1. **Fundamentals:** Simple propagation, rays, sources and receivers, radiated sound, bioacoustics, waveguides, scattering by bubbles, interior fluctuations, and rough surfaces, upper ocean boundary layer and rain precipitation.
- 2. Marine Bioacoustics: Introduction to the role of active and passive acoustic technology in studying organisms in the marine environment, Marine animal hearing, marine animal acoustic communication, Remote sensing and the impacts of sound on marine animals, Sensing of plankton and nekton, passive acoustics and marine animals, marine mammals, The use of acoustics as a tool in oceanographic instrumentation, The use of acoustics in the study of ocean

processes.

- 3. **Ocean Dynamics:** Tomography, time reversal, turbulence, Noise sources and spectra, Propeller Noise, Cavitation Noise, Depth dependence and directionality and slope-conversion effects Theoretical basis for noise modeling, Ambient noise and beam-noise statistics models Volume and boundary scattering, Cell scattering and point scattering techniques.
- 4. **Propagation:** Basic concepts, boundary interactions, attenuation and absorption, Frequency-domain wave equation formulations including ray theory, normal mode, multipath expansion.
- 5. Non-linear acoustics and Acoustics in Fluid Media: The propagation of finite amplitude waveforms, Acoustics streaming, Parametric and stimulated scattering effects in liquids, Superposition of simple courses, free space Green's functions, Kirchhoff-Helmholtz integral theorem, Rayleigh integral, radiation from cylinders and spheres Introduction to acoustic finite elements and acoustic boundary elements.
- 6. **Ocean Bottom:** Imaging hydrothermal vents, large scale mapping, mesoscale mapping. Principles of transduction and sonar transducer design.
- 7. **Other topics:** noise from pile driving, ocean energy devices, etc.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)							(PO))				
140.	COURSE OUTCOMES (COS)	1 2		3	4	5	6	7	8	9	10	11	12		
	Explain the fundamentals of sound														
CO1	propagation, sound of seismic, ships, wind and														
	rain, bioacoustics.														
	Identify the effects of sound in ocean														
CO2	dynamics, and imaging and mapping the														
	seafloor														
CO3	Devise the skill to formulate the combined					J									
COS	forward/inverse problem, from tracing ray							٧							
CO4	Estimate sound levels to solve equations for		V												
CO4	rainfall or current velocity.														

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the fundamentals of sound propagation, sound of seismic, ships, wind and rain, bioacoustics	C2	1,3	5	1-3	CT, F
CO2	Identify the effects of sound in ocean dynamics, and imaging and mapping the seafloor	C1	3	3	2-3	CT, MT, F
CO3	Devise the skill to formulate the	C6	2	2	6-8	CT, F

	combined forward/inverse problem,					
	from tracing ray					
	Estimate sound levels to solve					
CO4	equations for rainfall or current	C5	7	5	2	MT, ASG, F
	velocity.					

 $⁽C1-Remember,\,C2-Understand,\,C3-Apply,\,C4-Analyze,\,C5-Evaluate,\,and\,C6-Create;$

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications					
CO1-PO1	Use of theoretical and numerical models will enable the students to understand					
COI-FOI	sound propagation and distinguishing the mechanism of bioacoustics.					
	By analyzing the ocean dynamics and their effect in acoustic propagation, students					
CO2-PO2	will use the fundamental knowledge of sound propagation for imaging and mapping					
	of seafloor.					
CO3-PO5	Students will develop capability of using the tracing ray method for dealing with					
CO3-1 O3	forward/inverse problem in acoustic measurement.					
CO4-PO2	Students will formulate mathematical and theoretical model for estimating sound					
CO4-1 O2	levels to find out rainfall or current velocity.					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Fundamentals of Acoustics	

 $CP\text{-} Complex\ Problems,\ CA\text{-} Complex\ Activities,\ KP\text{-} Knowledge\ Profile,\ T-Test,\ PR-Project,$

 $Q-Quiz,\, ASG-Assignment,\, Pr-Presentation,\, R-Report,\, F-Final\, Exam,\, MT-\, Mid\, Term\, Exam)$

		,			
Class 1	A review of basic vibration theory and acoustic theory				
Class 2	The physics of sound propagation, reflection, and absorption phenomena.				
Class 3	Introduction to acoustic propagation				
Week 2	Marine Bioacoustics				
Class 4	Introduction to the role of active and passive acoustic technology in	CTL 1			
	studying organisms in the marine environment.	CT 1,			
Class 5	Marine animal hearing, marine animal acoustic communication	Final Exam			
Class 6	Remote sensing and the impacts of sound on marine animals.				
Week 3	Marine Acoustic Remote Sensing				
Class 7	The use of acoustics as a tool in oceanographic instrumentation,				
Class 8	The use of acoustics in the study of ocean processes				
Class 9	Assessment 01				
Week 4	Acoustical Oceanography				
Class 10	Distribution of physical and chemical properties in the oceans				
Class 11	Sound-speed calculation, measurement and distribution				
Class 12	Surface and bottom boundary conditions and biological effect	CT :			
Week 5	Ocean Dynamics	CT 2,			
Class 13	Noise sources and spectra, Propeller Noise, Cavitation Noise	Final Exam			
Class 14	Depth dependence and directionality and slope-conversion effects				
Class 15	Theoretical basis for noise modeling				
Week 6	Ocean Dynamics				
Class 16	Ambient noise and beam-noise statistics models				
Class 17	Volume and boundary scattering				
Class 18	Cell scattering and point scattering techniques				
Week 7	Propagation				
Class 19	Basic concepts, boundary interactions, attenuation and absorption				
Class 20	Frequency-domain wave equation formulations including ray theory,				
	normal mode, multipath expansion,	Mid Term,			
Class 21	Assessment 02	Final Exam			
Week 8	Acoustic radiation				
Class 22	Radiation efficiency- noise level, spectra and bandwith				
Class 23	Tomography				
Class 24	Prediction uncertainties in complex environments				
Week 9	Devices for under water sound production and reception				
Class 25	Principles of transduction and sonar transducer design				
Class 26	Commercial applications of underwater acoustics				
Class 27	Mid-term exam				
Week 10	Oceanic ray bending				
Class 28	Oceanic ray bending reflection of sound waves				
Class 29	Transmission loss				
Class 30	Bottom reflections				
Week 11	Non-linear acoustics				
Class 31	The propagation of finite amplitude waveforms				
Class 32	Acoustics streaming	Final Exam			
Class 33	Parametric and stimulated scattering effects in liquids.				
Week 12	Acoustics in Fluid Media				
		l l			

Class 34	Superposition of simple courses, free space Green's functions	
Class 35	Kirchhoff-Helmholtz integral theorem, Rayleigh integral, radiation from]
	cylinders and spheres	
Class 36	Introduction to acoustic finite elements and acoustic boundary elements	
Week13	Ocean Bottom	
Class 37	Imaging hydrothermal vents	
Class 38	large scale mapping, mesoscale mapping	
Class 39	Vibration measurements	CT 3,
Week 14	Transducer Materials and Devices	Final Exam
Class 40	Principles of transduction and sonar transducer design	
Class 41	Ocean energy devices	
Class 42	Course review	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO4	C1, C2, P3
Continuous	Assignment 1-3	2070	CO3	P6, C5
Assessment Class		5%	CO1, CO2, CO3,	C6, A4
(40%)	Participation	370	CO4	C0, A4
	Mid term	15%	CO1, CO4	C1, C4, A3
			CO1	C1, C2, C4
Fine	al Evam	60%	CO2	A2,C4
1.1116	Final Exam		CO3	C3, A4
			CO4	P1, P5, C5
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Sound in the Sea, Medwin, Cambridge University Press, 2005
- 2. Principles of Sonar Performance Modeling, Ainslie, Springer, 2010
- 3. Underwater Acoustics: Analysis, Design and Performance of Sonar, Hodges, Wiley, 2010
- 4. Inverse Problems in Underwater Acoustics, Taroudakis and Makrakis, Springer, 2001
- 5. Fundamentals of Acoustical Oceanography, Medwin and Clay, Associated Press, 1998
- 6. Ocean Acoustic Tomography, Munk, Worcester, and Wunsch, Cambridge University Press, 1995

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: NAME 499 Credit Hours: 3.00
Course Title: Shipyard Management Contact Hours: 3.00

Level and Term: Level 4, Term 2

PRE-REQUISITE

Course Code: GELM 275

Course Title: Leadership and Management

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Optional theoretical course designed to teach students about the organizational structures of shipyards, management of a shipyard's workforce and performance evaluation of employees. After taking this course, students will acquire knowledge of various shipbuilding process and activities such as tendering, estimation, engineering, procurement, construction and timely delivery. Finally, students shall be able to make decisions to select alternative design, production process or equipment to increase shipyard productivity and to reduce risk.

OBJECTIVES

- 1. To be familiar with the management of various shops and plants at shipyard.
- 2. Gain knowledge of shipbuilding process at various stages.
- 3. Be able to plan and manage shipyard's daily activities.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Comprehend** various processes of shipbuilding at different stages.
- 2. **Evaluate** design and process alternatives for selection of appropriate one.
- 3. **Plan** shipbuilding processes to maximize results.

COURSE CONTENTS

- 1. Shipbuilding: Phase-wise work contents, initial estimation procedures and practice, information flow, agreements.
- 2. Handling of material and material flow: Plant location, layout and construction, plant safety, Designer's roles, owner's requirements, builder's profit and society's rules.
- 3. Material and technological constraints: Alternative designs and acceptance of a compromise design, Post-production assessment for future guidance.
- 4. Cost evaluation in shipyard
- 5. Work flow of ship construction
- 6. Material procurement and handling
- 7. Overhead parameters in shipyard
- 8. Protection against fire and physical accidents
- 9. Docking & undocking precautions
- 10. Workers job environment and safety instructions

- 11. Precautions for entering in confined corporation
- 12. Gas freeness certificate

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO							(PO))		
140.	COURSE OUTCOMES (COS)	1 2 3 4 5 6 7 8 9 1						10	11	12		
CO1	Comprehend various processes of											
COI	shipbuilding at different stages.	V										
CO2	CO2 Evaluate design and process alternatives for selection of the appropriate one.				٦/							
CO2					٧							
CO3	Plan shipbuilding processes to maximize										٦/	
	results.										V	

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Comprehend various processes of shipbuilding at different stages.	C2	1		1-4	CT, F
CO2	Evaluate design and process alternatives for selection of the appropriate one.	C5	1		8	CT, Mid Term, F
CO3	Plan shipbuilding processes to maximize results.	C6	-		ı	CT/ASG, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of engineering fundamentals and shipbuilding has to be applied to
CO1-1 O1	understand various processes in shipbuilding at different stages.
CO2-PO4	Design and process alternatives are to be analyzed critically based upon existing
CO2-FO4	facilities at shipyards in order to select the appropriate one.
CO3-PO11	Various shipbuilding processes and schedule are to be planed after discussion with
CO3-FO11	other departments at shipyard.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Tooghing and I coming Activities	Engagement
Teaching and Learning Activities	(hours)

Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Course introduction, administration and motivation lecture	
Class 2	Introduction to shipbuilding, Shipbuilding in Bangladesh.	
Class 3	The maritime cluster: Linkage between shipyard, ship owner manufacturers, suppliers, service Providers etc.	
Week 2	Introduction to Shipbuilding	
Class 4	Typical shipbuilding process	CT 1,
Class 5	Challenges in shipbuilding.	Final Exam
Class 6	Three dimensions of shipbuilding: Functional (what), Spatial (where) and	
	Temporal (when)	
Week 3	Phase-wise work contents	
Class 7	Shipbuilding phases	
Class 8	Work done in each phase	
Class 9	Class Test - 1	
Week 4	Cost estimation procedures and practice in shipyards	
Class 10	Procedures for initial estimation and required inputs	
Class 11	Risks and margin in initial estimation, control, classification using code	
	(SFI code)	
Class 12	Demonstration with examples, sharing of lessons learnt	
Week 5	Information flow and Procurement	
Class 13	Shipyard Layout, information flows in shipbuilding process	CT 2,
Class 14	Procurement, prioritizing resources	Final Exam
Class 15	Purchase process, project procurement	
Week 6	Agreements	
Class 16	Contract agreements and other documentation	
Class 17	Discussion on build specification	
Class 18	Class Test -2	
Week 7	Plant location, layout and construction and plant safety & Handling of	
	material and material flow	
Class 19	Material handling strategy, yard layout, shipyard main store, shop stores	
Class 20	Transport, lifting facility	

Class 21	Time thief and automation ideas			
Week 8	Designer's roles, owner's requirements, builder's profit			
	and society's rules	Mid Term,		
Class 22	Owner's requirement for project development, designer's roles	Final Exam		
Class 23	Appointing class, class requirement, survey and compliance			
Class 24	Mid-Term Exam			
Week 9	Alternative designs and acceptance of a compromise design, Post- production assessment for future guidance			
Class 25	Design comparison, assessment criteria among design alternatives,			
Class 26	Material and technological constraints, post-production assessment			
Class 27	Examples, case study			
Week 10	Overhead Parameters in Shipyard			
Class 28	Definition of overhead in shipbuilding context.			
Class 29	Ways to reduce and control overhead:			
Class 30	Case study on overhead			
Week 11	Docking and Undocking Precautions	Mid Term,		
Class 31	bocking undocking methods, advantage and disadvantages of various			
	docking-undocking methods	Final Exam		
Class 32	Capacity of winch, pulley, wire, trolley checking with calibration and			
	certifications			
Class 33	Air bag pressure test, launching way slope check			
Week 12	Workers' Job Environment and Safety Instructions			
Class 34	Concept of risk and safety			
Class 35	Shipyard safety standard, safety in various shop			
Class 36	Risk assessment and compliance with shipyard safety standard			
Week13	Precautions for entering in confined compartment			
Class 37	Associated risks for working in confined spaces			
Class 38	Access, light, ventilation, oxygen level check, attendant requirement.			
Class 39	Class Test - 3	CT 3,		
Week 14	Gas Free Certificates	Final Exam		
Class 40	Accident case study in confined space			
Class 41	Procedure to obtain gas free certificate			
Class 42	Course review			

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C4
Continuous	Assignment 1-3	2070	CO3	C3, C4
Assessment	Class	5%	CO1, CO2, CO3,	C6, A2
(40%)	Participation	3 70	CO4	C0, A2
	Mid term	15%	CO2, CO4	C1, C2, C4
	·		CO1	C1, C2
Fina	al Exam	60%	CO2	C1, C2,C4
			CO3	C4

		CO4	C4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Shipyard Project Management Paperback August 24, 2017, by Fernando Remolina
- 2. Workshop process, Practice and Materials by Bruce J. Black
- 3. Shipboard Accident Response By Eric Murdoch BSc, MSc, C. Eng
- 4. Fisher Maritime Consulting Group Florham Park, New Jersey, USA
- 5. Cost Management in Shipbuilding, By Fischer, Jan O.; Holbach, Gerd

INTERDISCIPLINARY COURSES

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: CSE 115 Credit Hours: 3.00
Course Title: Computer Programming Language Contact Hours: 3.00

Level and Term: Level 1 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Computer Programming course is designed to teach students about the basic programming theory in software and programming, namely types of ship and floating structures. Students will be able to perform necessary calculations related to the basic design, trim and stability calculations using computer programming once the course is completed.

OBJECTIVES

- 1. To provide basic concepts of compilers, interpreters and IDE
- 2. To know about various syntax, semantics of programming languages.
- 3. To analyze and design various applications using different library functions of programming language.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Describe** the concept of programming language and **Identify** syntax, semantics of programming language
- 2. **Construct** a computer programming pseudocode and **Apply** pseudocode in a computer program.
- 3. **Explain** a programming architecture and **Justify** program design and development.
- 4. **Assist** for testing and debugging tools to discover errors

COURSE CONTENTS

- 1. **Introduction to Programming and OOP:** Programing basics, Programming concepts, Programming and coding; Algorithm, Philosophy of Object Oriented Programming (OOP); Advantages of OOP over structured programming; Program development stages; Encapsulation, classes and objects, access specifiers, static and non-static members; Constructors, destructors and copy constructors; Array of objects, object pointers, and object references; Compilers, interpreters and IDE; Syntax and semantics; Flow charts.
- 2. **Inheritance and Polymorphism:** Single and multiple inheritance; overloading, abstract classes, virtual functions and overriding; Exceptions; Object Oriented I/O; Template functions and classes; Multi-threaded Programming.
- 3. Structured Programming Language: Data types, operators, expressions, control structures.

- 4. **Functions and Program Structure:** Parameter passing conventions, scope rules and storage classes, recursion; Header files; Preprocessor; Pointers and arrays; Strings; Multidimensional array; User defined data types: structures, unions, enumerations; Input and Output: standard input and output, formatted input and output, file access; Variable length argument list; Command line parameters; Error Handling; Exception Handling, Graphics; Linking; Library functions, Type casting.
- 5. **Memory Allocation:** Static and Dynamic; Recursive Functions;
- 6. Introduction to Data Structure: Stack, Queue; File I/O; Graphics

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	No. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES					(POs)								
140.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12			
	Describe the concept of programming															
CO1	language and Identify syntax, semantics of															
	programming language															
	Construct a computer programming															
CO2	pseudocode and Apply pseudocode in a															
	computer program.															
CO3	Explain a programming architecture and		1				J									
COS	Justify program design and development.			V												
CO4	Assist for testing and debugging tools to		V													
C04	discover errors		V													

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Describe the concept of programming language and Identify syntax, semantics of programming language	C1			1-4	CT, F
CO2	Construct a computer programming pseudocode and Apply pseudocode in a computer program.	С3			1-4	CT/ASG, MT, F
СОЗ	Explain a programming architecture and Justify program design and development.	A3			5	CT/ASG, MT, F
CO4	Assist for testing and debugging tools to discover errors	A2			1-4	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping Justifications

CO1-PO1	The knowledge of binary mathematics and science has to be applied to understand
	basic computer programming concepts
CO2-PO1	To construct a pseudocode and apply the knowledge in programming, understanding
	of flow chart and algorithm concepts is required.
CO3-PO3	To be able to explain and justify a program, understanding detailed programming
	concepts is required.
CO4-PO2	This is required in order to conduct any investigation of complex problems related
	to computer programing architecture.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Programming Concepts, IDE and Compiler	
Class 2	Structured Programming	
Class 3	Object-oriented programming	
Week 2	Numbering System and Memory Allocation	
Class 4	Concept of Number System and Memory Allocation	
Class 5	Binary, Octal and Decimal Number System	CT 1,
Class 6	Memory allocation in programming	Final Exam
Week 3	Introduction to Data Types, Variables and Statement	
Class 7	Concept of Header file types, Data types and Keywords	
Class 8	Concept of Variables, Constant and their declarations	
Class 9	Concept of Statement and Expression	
Week 4	Operators and Basic Library functions	
Class 10	Operators and their types	
Class 11	Basic library functions	
Class 12	Assessment 01	
Week 5	Flowchart and Algorithm	CT 2,

Class 13	Introduction to Pseudocode, Algorithm and Flow chart	Final Exam
Class 14	Concept of Structure: Sequence, Decision and Repetition	
Class 15	Case wise Structure	
Week 6	Conditionals Segment 1]
Class 16	Concepts of Conditionals, Expression for conditionals and their types.	
Class 17	The If else conditional]
Class 18	The do-while and while conditional]
Week 7	Conditionals Segment 2	
Class 19	Switch Case conditional	
Class 20	Loop and Nested loop conditionals	
Class 21	Operators and Functions in Conditional	Mid Term,
Week 8	Loop and Nested Loop	Final Exam
Class 22	Detailed concepts and control structures of Loop and Nested loop	
Class 23	Assessment 02	
Class 24	Application of Loop and Nested Loop]
Week 9	Function]
Class 25	Concepts of Function and function types]
Class 26	Function process, parameter passing and creation]
Class 27	Advance recursivity in function	
Week 10	Function and loop Combination	
Class 28	Concept of Class and Object]
Class 29	Allocation and creation of loop and function in program	
Class 30	Application of loop and function in class and object	
Week 11	Array and pointer]
Class 31	Concept of Array, Pointer and String	Mid Term,
Class 32	Concept of Multidomain array and pointer	Final Exam
Class 33	Dynamic memory allocation	
Week 12	Introduction to File System	
Class 34	Concept of File input output, user definition and preprocessor	
Class 35	User defined data type, union and enumeration	
Class 36	Assessment 03	
Week13	Error Handling	
Class 37	Concept of Bitwise operations and linking	
Class 38	Concept of Stack and Que]
Class 39	Concept on Error handling	CT 3,
Week 14	Course Summarization	Final Exam
Class 40	Summarization of the syllabus and course contents	
Class 41	Assessment report to Students	
Class 42	Course Feedback and review from students	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Con	ponents	Grading	COs	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3	C1, C3, A3
Assessment (40%)	Class Participation	5%	C1, C3, A3, A2	
	Mid term	15%	CO2, CO3	A3, A2
			CO1	C1
Fina	al Exam	60%	CO2	C3
			CO3	A3

		CO4	A2
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. You Can Do It! A Beginner's Introduction to Computer Programming by Francis Glassborow
- 2. Computer Programming for Beginners: Fundamentals of Programming Terms and Concepts by Nathan Clark
- 3. The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David Thomas
- 4. Teach Yourself C Herbert Schidlt
- 5. Programming in Ansi C E Balagurusam
- 6. C: The Complete Reference Herbert Schildt
- 7. C Programming Language Dennis M. Ritchel

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: CSE 116 Contact Hours: 3.00
Course Title: Computer Programming Lab Credit Hours: 1.50

Level and Term: Level 1 Term 2

PRE-REQUISITE

Course Code:NAME 115

Course Title: Computer Programming Language

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Computer Programming Lab course is designed to teach students about the basic programming application is ship design retrospect, namely types of ship and floating structures. Students will be able to perform necessary calculations related to the basic design, trim and stability calculations using computer programming once the course is completed. It is expected that students can develop critical thinking behind developing a computer program and able to check their calculations.

OBJECTIVES

- 1. To enable students to be familiarized and implement different programming concepts in application.
- 2. To familiarize the students with applied and calculative concept of computer programming
- 3. To enable students to compute different parameters of ships using programming concept.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Solve** programming problems and **Perform** computations with the aid of computer **develop** lines plan of ship.
- 2. Apply computer tools in problem solving and assignments.
- 3. Analyse and Contrast ideas to solve complicated problems.

COURSE CONTENTS

1. Introduction, Structured programming language

- a. Introduction to C and C++ Programming Language
- b. Data types, Variable declaration, Program Statements, Operators, Expressions
- c. Problem solving approaches, Basic Input / Output
- d. Control Structure: if else, switch case
- e. Control Structures: loop (different types), nested Loop
- f. Array and its uses, Array Operations, 2D Array
- g. Strings, Function, Recursion, Pointer, File Access, Object

2. Oriented Programming:

- a. Introduction to C++ (Object Oriented)
- b. Class & Object
- c. Application of the programming language in solving ship related problems.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Solve programming problems and Perform		1										
COI	computations with the aid of computer	٧											
CO2	Apply computer tools in problem solving					2/							
002	and assignments					V							
СОЗ	Analyse and Contrast ideas to solve			V									
	complicated problems			V									

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Solve programming problems and Perform computations with the aid of computer	A5	1	1	1-4	R,Q,T
CO2	Apply computer tools in problem solving and assignments	C3	1	2	6	R,Q,T
CO3	Analyse and Contrast ideas to solve complicated problems	C4	1	2	5	R,Q,T

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping Justifications						
CO1-PO2	In order to develop problem solving skill.					
CO2-PO5	To learn modern programming tools to solve problems.					
CO3-PO3	In order to assess the analysing and deconstructing a problem for solution.					

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Lab Work	30
Self-Directed Learning	
Preparation of Lab Assignment	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20

Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

COURSE SCHEDULE

Week	Topics
Week 1	Course introduction, Introduction to Programming and Object-Oriented
	programming
Week 2	IDE and Code blocks, data-type, variables and keywords
Week 3	Basic Library functions and Demonstration
Week 4	Conditionals (If Else) and problem Demonstration
Week 5	Conditionals (while/do-while) and problem Demonstration
Week 6	Loop (for) and problem Demonstration
Week 7	Mid Quiz/Lab test
Week 8	Nested Loop (for/if-else/while/do-while) and problem Demonstration
Week 9	Functions and Problem demonstration
Week 10	Array and Pointer
Week 11	File system
Week 12	Course feedback and Overall Review
Week 13	Final Lab Test
Week 14	Final Quiz

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	Components		СО	Blooms Taxonomy
	Lab		CO 1	A5
Continuou	participation	15%	CO 2	C3
S	and Report		CO 3	C4
Assessme	Mid-quiz		CO 1	A5
nt (40%)	t (40%) or		CO 2	C3
	lab-test		CO 3	C4
F:1	I -1- T4	250/	CO 1	A5
Finai	Final Lab Test 25%		CO 2	C3
Fine	al Ouiz	35%	002	
1 1116	Final Quiz		CO 3	A5
Tota	l Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. You Can Do It! A Beginner's Introduction to Computer Programming by Francis Glassborow
- 2. Computer Programming for Beginners: Fundamentals of Programming Terms and Concepts by Nathan Clark
- 3. The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David Thomas4. Teach Yourself C Herbert Schidlt
- 5. Programming in Ansi C E Balagurusam
- 6. C: The Complete Reference Herbert Schildt
- 7. C Programming Language Dennis M. Ritchel

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: EECE 281 Credit Hours: 4.00
Course Title: Marine Electrical and Electronics Contact Hours: 4.00

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Compulsory theoretical course based on application of electrical and electronic technology in marine field.

OBJECTIVES

- 1. Be familiarized with electrical technology, able to investigate and analyse electrical circuits and get introduced with power generation and distribution system, relevant SOLAS regulation applicable for ship and marine establishments.
- 2. To develop a basic foundation on electrical machines with a special focus on operating principle, identification of parts and accessories, constructional features, types, characteristics features, efficiency and loss measurement, application and maintenance etc.
- 3. To have a basic understanding on electronic components and its applications in marine electronics
- 4. To develop a broad idea on navigational aid equipment such as Radar, Gyro compass, echo sounder, speed log etc.

COURSE OUTCOMES (COs)

On successful completion of this course, students should:

- 1. **Be able to describe** basic theories of electric circuits, analyse electrical circuits and its application in electrical equipment, identify power generation and distribution system with relevant SOLAS regulation applicable for ship and marine establishments
- Be capable to describe basic theories of electrical machines and explain principle of operation, constructional features and evaluate the characteristics and find out their efficiency and losses, applications and maintenance etc.
- 3. **Be able to explain** theories of electronic components and identify its applications in marine electronics sector.
- 4. **Be capable to explain** the principles of navigational aid equipment such as Radar, Gyro compass, echo sounder, speed log, GPS etc and communication equipment used on board ships.

COURSE CONTENTS

1. **DC and AC circuit analysis:** Kirchhoff's law, Thevenin theorem, Norton theorem, Node Pair voltage theorem etc.

- 2. **Three phase induction motors:** Basic Theory, Principle of operation, Types, construction, Equivalent circuit, Starting, speed control, Maintenance, applications.
- 3. **Single phase induction motors:** Basic Theory, Principle of operation, Equivalent circuit, types, starting, Maintenance, applications.
- 4. **AC generators:** Basic Theory, Principle of operation, Construction, excitation system, generator on load, voltage regulation, synchronization, Maintenance and applications.
- 5. **Synchronous motor:** Principle of operation, starting, application, maintenance Steering system.
- 6. Electronic Diodes, BJTs, diode and BJT circuits, IC, MOSFET and SCR as power switching devices.
- 7. Controlled rectifiers and inverters.
- 8. **Radar and wireless equipment:** Principle, block diagram, different parameters, Maintenance. Navigational and Electronic navigational aids (GPS, Gyro compass. Echo sounder, speed log, LORAN, RDF and Decca Chain).
- 9. Power generation and distribution (PGT) system onboard ship

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (POs)										
No.	COURSE OUTCOMES (COS)	1			4	5	6	7	8	9	10	11	12
	Be able to describe basic theories of												
	electric circuits, analyse electrical circuits												
	and its application in electrical equipment,												
CO1	identify power generation and distribution												
	system with relevant SOLAS regulation												
	applicable for ship and marine												
	establishments												
	Be capable to describe basic theories of												
	electrical machines and explain principle	√											
CO2	of operation, constructional features and												
CO2	evaluate the characteristics and find out												
	their efficiency and losses, applications												
	and maintenance etc.												
	Be able to explain theories of electronic												
CO3	components and identify its applications												
	in marine electronics sector.												
	Be capable to explain the principles of												
	navigational aid equipment such as Radar,												
CO4	Gyro compass, echo sounder, speed log,												
	GPS etc and communication equipment												
	used on board ships.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to describe basic theories of	C3	1		1-4	CT/ ASG, F

	electric circuits, analyse electrical circuits and its application in electrical equipment, identify power generation and distribution system with relevant SOLAS regulation applicable for ship and marine establishments				
CO2	Be capable to describe basic theories of electrical machines and explain principle of operation, constructional features and evaluate the characteristics and find out their efficiency and losses, applications and maintenance etc.	C1	1	1-4	CT/ ASG, MT, F
CO3	Be able to explain theories of electronic components and identify its applications in marine electronics sector.	C3	2	5	CT/ ASG, F
CO4	Be capable to explain the principles of navigational aid equipment such as Radar, Gyro compass, echo sounder, speed log, GPS etc and communication equipment used on board ships.	C2, C3	1	6	CT/ ASG, MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics, science and engineering fundamentals have to be applied to calculate the parameters of electrical equipment and circuit in a ship/marine vessel.
CO2-PO1	In order to identify the parameters of various electrical and electronics machineries of ships.
CO3-PO3	To design a sophisticated ship with specialized electronic equipment for specific purpose/ research.
CO4-PO2	The knowledge of mathematics, natural science and engineering science have to be applied to identify, analyze and solve complex engineering problems.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	56

Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	28
Preparation for final examination	28
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	160

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	DC Circuit analysis	
Class 1	Nodal analysis and examples	
Class 2	Super node with examples, Basic circuit theorems	
Class 3	Thevenin's theorem with examples	
Class 4	Norton's theorem with examples	
Week 2	Alternator	
Class 5	Synchronous Generator: Operating principle,]
Class 6	Losses in Alternator	CT 1
Class 7	equivalent circuit of synchronous Generator, Excitation systems of Synchronous Generator	Final Exam
Class 8	Emf equation of synchronous generator, Mathematical problems	
Week 3	Alternator (Cont)	
	synchronous impedance, synchronous]
Class 9	impedance method of predicting voltage regulation and its limitations	
Class 10	Vector diagram under different loads	
Class 11	factors affecting voltage regulation	
Class 12	Load sharing and parallel operation	
Week 4	Induction Motor	
Class 13	Three phase induction motor: principle	
Class 14	Rotating magnetic field	
Class 15	Construction of squirrel cage IM, equivalent circuit	
Class 16	vector diagram, torque-speed characteristics	
Week 5	Induction Motor (Cont)	
Class 17	no-load test, blocked rotor test	CT 2
Class 18	starting and braking, speed control	Mid Term
Class 19	Single phase induction motor: Types of operation	Final Exam
Class 20	starting and torque speed characteristics	
Week 6	Synchronous Motor	
Class 21	Synchronous motor: Operation	
Class 22	Vector diagrams of synchronous motor	
Class 23	effect of loading under different excitation condition.	
Class 24	Starting method of synchronous motor	

Week 7	Synchronous Motor (Cont)	
Class 25	effect of changing excitation, Armature reactions	
Class 26	Variations of power factor with armature reactions, Mathematical	
	Problems.	
Class 27	Maximum load angle	
Class 28	Mathematical Problems	
Week 8	Diode	
Class 29	Introduction to semiconductor devices and its classifications	
Class 30	P-type and N-type materials and doping, Semiconductor diode and its band diagram	CT 3 Mid Term
Class 31	Biasing of semiconductor diodes, I-V characteristics of diode and equivalent circuit of diodes	Final Exam
Class 32	Zener diode and related maths of zener diode,	
Week 9	Diode (Cont)	
Class 33	Applications of diode, HWR and FWR using diode	
Class 34	Diode bridge rectifier and Centre tapped transformer rectifier, Clipper circuit and related problems	
Class 35	Clamper circuit and related problems	
Class 36	Ripple factor and related mathematical problems	
Week 10	ВЈТ	
Class 37	Introduction to BJT and construction, Principle and operation of BJT	
Class 38	Operating regions of BJT and its different configurations	
Class 39	CB and CE configurations and characteristics curves	
Class 40	Mathematical problems related to CB and CC configurations.	
Week 11	MOSFET	
Class 41	Introduction to MOSFET, Construction and operating principle of MOSFET	
Class 42	Types of MOSFET, Construction and operating principle of depletion type and enhancement type MOSFET	
Class 43	Biasing of MOSFET and related problems, Characteristics curve of MOSFET	
Class 44	threshold voltage, Body effect, current- voltage characteristics of an enhancement MOSFET	CT 4 Final Exam
Week 12	SCR	
Class 45	Introduction to power semiconductors witches, Introduction to triggering devices	
Class 46	Introduction to SCR and IGBT, Controlled single phase and three phase Rectifiers	
Class 47	Introduction to AC voltage controllers	
Class 48	Introduction to Single and three phase Choppers, Working principle of	
	Single and three	
	phase Choppers	
Week13	Radar and wireless equipment	
Class 49	Principle, block diagram, different parameters	
Class 50	Maintenance Navigational and Electronic navigational aids	

Class 51	GPS, Gyro compass	
Class 52	Echo sounder, speed log	
Week 14	Radar and wireless equipment (Cont)	
Class 53	Introduction to LORAN	
Class 54	RDF and Decca Chain	
Class 55	Power generation and distribution (PGT) system	
Class 56	Review class	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C3
Continuous	Assignment 1-3	2070	CO3	C3
Assessment	Class	5%	CO1, CO2, CO3,	C1, C2, C3
(40%)	Participation	3 70	CO4	C1, C2, C3
	Mid term	15%	CO1, CO2, CO3	C1, C3
			CO1	C3
Fine	al Exam	60%	CO2	C1
171116	ai Exam	0070	CO3	C3
			CO4	C2, C3
Tota	al Marks	100%		

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

- 1. Electric Machinery Fundamentals- Stephen J. Chapman;
- 2. A Text book of Electrical Technology (V-II) B.L. Theraja and A. K. Theraja;
- 3. Electronic Devices & Circuit Theory-Robert L. Boylestad.
- 4. Principles of Electronics: V.K. Mehta
- 5. Practical Marine Electrical Knowledge by Dennis T. Hall
- 6. Marine Electrical Practice G. O. Watson
- 7. Marine Electrical Equipment and Practice by H. D. McGeorge
- 8. The Marine Electrical and Electronics Bible by John C. Payne

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: EECE 382 Credit Hours: 1.50
Course Title: Marine Electrical and Electronics Lab Contact Hours: 3.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

To help the students to explore various DC and AC machines and to teach about the concepts, principles and working of basic electronic devices and circuits by hand-held experiments. Our mission is to expose students to the constructions of electrical machines and basic electronic circuit to analyze their performance. This course is targeted to verify the properties of generator, motor, diode, BJT, MOSFET and relate them with their theoretical knowledge.

OBJECTIVES

- 1. To familiarize the students with the basic electrical machines like transformer, dc generator, dc motor, synchronous machines, induction machines etc.
- 2. To calculate various parameters of machines like voltage regulation, efficiency etc., observe their behaviour under various load conditions and compare them.
- 3. To enable the students to be familiarized and implement different semiconductor diode circuits (e.g. rectifier, regulator), their output characteristics and their practical implication in real life.
- 4. To familiarize the students with input and output characteristics of different BJTs, FETs and also the operation of each device in terms of junction bias voltage and charge carrier movement.

COURSE OUTCOMES (COs)

On successful completion of this course, students should:

- 1. **Be able to compute** the voltage regulation and efficiency of electrical machine, like transformer, alternator, induction motor etc. and **justify** these characteristics under various loading condition.
- 2. **Be able to compare** the starting and operating characteristics of various induction machines like squirrel cage induction motor, wound rotor induction motor, capacitor start & run motor.
- 3. **Developing capability to compare** the input and output characteristics of different electronic component obtained by both simulations and hand-held experiments.
- Becoming proficient in interpreting the behaviour of FET with different configurations and design electronic circuits adapting to the specified requirements using both simulating tools and hardware.
- 5. **Developing collaborative nature by discussing** and **performing** as a group and **organize** project tasks maintaining solidarity during the group projects and presentations

COURSE CONTENT

- 1. Computing the regulation of the Transformer in Various Loads.
- 2. Study the properties of Three-Phase Alternator in various loads
- 3. Study the properties of Three Phase Induction motor.
- 4. Study the properties of Capacitor-Start & Run Motor.
- 5. Study the properties of synchronous motor.
- 6. Study the characteristics of diode.
- 7. Study of diode rectifier circuits.
- 8. Study of the characteristics of SCR.
- 9. Study of common base bipolar junction transistor characteristics.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No. COURSE OUTCOME (COs)			PROGRAM OUTCOMES (PO)										
NO.	COURSE OUTCOME (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to compute the voltage regulation and efficiency of electrical machine, like transformer, alternator, induction motor etc. and justify these characteristics under various loading condition.	V											
CO2	Be able to compare the starting and operating characteristics of various induction machines like squirrel cage induction motor, wound rotor induction motor, capacitor start & run motor.		1										
CO3	Developing capability to compare the input and output characteristics of different electronic component obtained by both simulations and hand-held experiments.			√									
CO4	Becoming proficient in interpreting the behaviour of FET with different configurations and design electronic circuits adapting to the specified requirements using both simulating tools and hardware.			V									
CO5	Developing collaborative nature by discussing and performing as a group and organize project tasks maintaining solidarity during the group projects and presentations											V	

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
-----	----------------------	---------------------	----	----	----	-----------------------

CO1	Be able to compute the voltage regulation and efficiency of electrical machine, like transformer, alternator, induction motor etc. and justify these characteristics under various loading condition.	C3, C5		1	2	R, Q, T
CO2	Be able to compare the starting and operating characteristics of various induction machines like squirrel cage induction motor, wound rotor induction motor, capacitor start & run motor.	C1, P3	1	1	1,3 ,6	R, Q, T
CO3	Developing capability to compare the input and output characteristics of different electronic component obtained by both simulations and hand-held experiments.	C4, C5, P1	1		2, 3, 5, 6	R,Q,T
CO4	Becoming proficient in interpreting the behaviour of FET with different configurations and design electronic circuits adapting to the specified requirements using both simulating tools and hardware.	C2, P6, P7	1,2		2, 3, 5, 6	R,Q,T
CO5	Developing collaborative nature by discussing and performing as a group and organize project tasks maintaining solidarity during the group projects and presentations.	A1, A2, A3, A4		1	7	PR, Pr

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	In order to calculate voltage regulation and efficiency, the knowledge of
	natural science and mathematics would be required.
CO2-PO2	In order to perform the experiments, the knowledge of engineering
	fundamentals is also required.
	Ability to design electronic circuits with the perfect values of active and
CO3-PO3	passive components is required in order to achieve input-output
	characteristics.
CO3-PO5	Circuit simulating tools and numerical tools are required for solving large
CO3-FO3	scale complex electronic circuits.
CO4-PO3	Ability to design electronic circuits with the perfect values of active and
CO4-FO3	passive components is required in order to achieve transfer characteristics.
CO5-PO11	For achieving project management skills and develop decision making

qualities, actively participating in group projects is necessary.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE SCHEDULE

Week1	Introduction to the lab equipment, rules and norms of the laboratory and safety guidelines.
Week2	Expt-01: Computing the regulation of the Transformer in Various Loads.
Week3	Expt-02: Study the properties of Three-Phase Alternator in various loads
Week4	Expt-03: Study the properties of Three Phase Induction motor.
Week5	Expt-04: Study the properties of Capacitor-Start & Run Motor.
Week6	Expt-05: Study the properties of synchronous motor.
Week7	Expt-06: Study the characteristics of diode.
Week8	Expt-07: Study of diode rectifier circuits.
Week9	Expt-08: Study of the characteristics of SCR.
Week10	Expt-09: Study of common base bipolar junction transistor characteristics.
Week11	Practice Lab
Week12	Lab Test + Viva
Week13	Quiz test
Week14	Project submission

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	CO	Bloom's Taxonomy
Continuous	Lab Participation and	20%	CO1	C3, C5
Assessment	Report		CO2	C1, P3

(40%)			CO3	C4, C5, P1
			CO4	C2, P6, P7
	Labtest-1, Labtest-2	30%	CO1	C3, C5
			CO2	C1, P3
			CO 3	C4, C5, P1
			CO4	C2, P6, P7
	Project and	25%	CO5	A1, A2, A3, A4
	Presentation			
Lab Quiz		25%	CO1	C3, C5
			CO2	C1, P3
			CO3	C4, C5, P1
			CO4	C2, P6, P7
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Electric Machinery Fundamentals- Stephen J. Chapman;
- 2. A Text book of Electrical Technology (V-II) B.L. Theraja and A. K. Theraja;
- 3. Electronic Devices & Circuit Theory-Robert L. Boylestad.
- 4. Principles of Electronics: V.K. Mehta
- 5. Practical Marine Electrical Knowledge by Dennis T. Hall
- 6. Marine Electrical Practice G. O. Watson
- 7. Marine Electrical Equipment and Practice by H. D. McGeorge
- 8. The Marine Electrical and Electronics Bible by John C. Payne

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: ME 150 Contact Hours: 3.00 Course Title: Mechanical Engineering Drawing Credit Hours: 1.50

Level and Term: Level 1 Term I

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The aim of this course is to provide the concept of designing and drawing accurate schematics for simple blocks, orthographic, auxiliary drawing, sectional drawing and isometric representations, dimensioning, etc., which will be helpful during project, work in later semesters, as well as professionally.

OBJECTIVES

- 1. To introduce the principles and perspectives of geometric drawing that includes the standardization, drafting, dimensions and etc.
- 2. To introduce the technique of engineering graphics as a basis of engineering communication and expression of idea and thought.
- 3. To familiarize with the proper and standard technique in lettering, basic geometric constructions, sketching, dimensioning methods to describe size, shape and position accurately on an engineering drawing.
- 4. To introduce orthographic projection auxiliary, sectional views, and apply 3D pictorials to choose the best view to present the drawings.
- 5. To expose final drawings during the design process including assembly, machine and working drawings.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Demonstrate** use of appropriate standards and conventions in drawing sheet preparation and layout.
- 2. **Apply** the correct methods of referencing relevant specifications in the interpretation of Mechanical engineering drawings.
- 3. **Perform** the correct conventions and techniques in drawing orthographic, sectional and auxiliary views.
- 4. **Produce** isometric and oblique pictorial form from third angle orthogonal drawings.

COURSE CONTENTS

- 1. Introduction, Familiarization with drawing tools and types of projections.
- 2. Hands on skill on object drawing.

- 3. Drawing orthographic views of simple blocks, drawing orthographic views of objects with round features, drawing orthographic views of objects with fillets, rounds.
- 4. Drawing sectional views and Drawing auxiliary views.
- 5. Drawing isometric views of simple blocks, drawing isometric views with circle, drawing isometric views with missing lines, drawing isometric views.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	No. COURSE OUTCOME (COs)		PROGRAM OUTCOMES (POs)										
110.	COURSE OUTCOME (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate use of appropriate standards and conventions in drawing sheet preparation and layout.												√
CO2	Apply the correct methods of referencing relevant specifications in the interpretation of Mechanical engineering drawings.												V
СОЗ	Perform the correct conventions and techniques in drawing orthographic, sectional and auxiliary views.												
CO4	Produce isometric and oblique pictorial form from third angle orthogonal drawings.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Demonstrate use of appropriate standards and conventions in drawing sheet preparation and layout.	C3				R, Q
CO2	Apply the correct methods of referencing relevant specifications in the interpretation of Mechanical engineering drawings.	C3				R,CT,Q
CO3	Perform the correct conventions and techniques in drawing orthographic, sectional and auxiliary views.	A2	1		1-4	R,CT,Q
CO4	Produce isometric and oblique pictorial form from third angle orthogonal drawings.	C3	1		1-4	R,CT,Q

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications						
CO1-PO12	In order to develop concept of appropriate standards and conventions in drawing						
	sheet preparation and layout.						
CO2-PO12	In order to develop concept of correct methods on referencing relevant						
CO2-FO12	specifications in the interpretation of Mechanical engineering drawings.						
CO3-PO1	The knowledge of science has to be applied to perform the correct conventions						
CO3-PO1	and techniques in drawing orthographic, sectional and auxiliary views.						
CO4-PO1	In order to apply the engineering knowledge to develop the isometric and oblique						
CO4-PO1	pictorial form from third angle orthogonal drawings.						

TEACHING METHODOLOGY

Lecture followed by hands on drawing session and discussion, co-operative and collaborative method, project based method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

Week 1	Introduction, Familiarization with drawing tools and types of projections.
Week 2	Drawing orthographic views of simple blocks
Week 3	Drawing orthographic views of objects with round features.
Week 4	Drawing orthographic views of objects with fillets, rounds.
Week 5	Class test on orthographic views.
Week 6	Drawing sectional views.
Week 7	Drawing auxiliary views.
Week 8	Class test on sectional and auxiliary views.
Week 9	Drawing isometric views of simple blocks.
Week 10	Drawing isometric views with circle.
Week 11	Drawing isometric views with missing lines.

Week 12	Drawing isometric views with view.
Week 13	Class test on isometric views.
Week 14	Final Quiz.

Components		Grading	COs	Bloom's Taxonomy
			CO 1	C1, C3,A1
	Lab participation	20%	CO 2	C4, C5, A1
	and Report	20%	CO 3	C3, C4
			CO 4	C3
Continuous			CO 1	C1, C3,C4
Assessment	Labtest-1,Labtest-2	30%	CO 2	C4, C5, P1
			CO 3	C3, C4
			CO 4	C3
	Project and Presentation	25%	CO 1, CO 2, CO 3	A1, A2, A3, A4
			CO 1	CO 2
Lab Quiz		25%	CO 2	CO 3
Lab Quiz		2370	CO 3	C3, P6, P7
			CO 4	C3
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Mechanical Engineering drawing By Dr. Md. Quamrul Islam
- 2. Textbook of Engineering Drawing By K. Venkata Reddy

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: SHOP 180 Credit Hours: 1.5
Course Title: Workshop Practice (Foundry, Welding and Machine Shop) Contact Hours: 3.0

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Foundry, Welding and Machine Shop Sessional course is designed to provide students with the theoretical and practical skills needed to develop their future professional activity in the areas of foundry and/or welding, on production management, casting design and product control, areas of safety, speed and feed calculations, layout equipment, cutting tools, and machine tool equipment. Attention is given to the methodologies of casting design, as well as to the techniques of identification, characterization and resolution of product defects. Also introduces and studies the more technical shop operations of threading, tapping, boring, carbide tooling, and principles of metal cutting. Principles of metal cutting include the machining ability of metals and how it relates to chip formation.

OBJECTIVES

- 1. To provide students with the theoretical and practical skills needed to develop their future professional activity in the areas of foundry and/or welding, on production management
- 2. To impart knowledge on casting design and product control
- 3. To enable to acknowledge the safety precautions required to run an abrasive grinding machine
- 4. To enable to recognize surface grinder types, grinding wheel care, grinding wheels and abrasive products, mount a grinding wheel, true and dress a grinding wheel.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Design** simple patterns and pattern plates for the casting process.
- 2. **Specify** and **select** foundry and welding equipment.
- 3. **Identify** and **establish** correcting measures to eliminate casting and welding defects.
- 4. **Identify** the characteristics of an abrasive grinding machine, drilling machine, lathe machine, shaper machine, milling machine.

COURSE CONTENTS

- 1. Foundry
 - a. Introduction to foundry, tools and equipment;
 - b. Patterns: function, pattern making;
 - c. Molding: molding materials sand preparation, types of mold, procedure;
 - d. Cores: types, core making materials;
 - e. Metal melting and casting; Inspection of casting and casting defects.

2. Welding

- a. Metal joints: riveting, grooving, soldering, welding;
- b. Welding practice: electric arc steel, aluminum; Types of electrode;
- c. Welding defects: visual, destructive and non-destructive tests of welding.
- d. Gas welding and equipment; Types of flame; Welding of different types of materials;
- e. Gas welding defects; Test of gas welding.

3. Tools

- a. Common bench and hand tools, marking and layout tools;
- b. Measuring tools, cutting tools, machine tools, Bench work on jobs;
- c. Practices on machine tools: drilling machine, lathe machine, shaper machine, milling machine, grinding machine.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)			PRO	OGI	RAI	M C	UT	CO	ME	ES (P	O)			
110.	COURSE OUTCOMES (COS)	1	2	2 3 4 5		5	6	7	8	9	10	11	12		
CO1	Design simple patterns and pattern plates	V													
COI	for the casting process														
CO2	Specify and select foundry and welding	V													
CO2	equipment.														
CO3	Identify and establish correcting measures				V										
003	to eliminate casting and welding defects.														
	Identify the characteristics of an abrasive														
CO4	grinding machine, drilling machine, lathe														
CO4	machine, shaper machine, milling machine														

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	CP	CA	KP	Assessment
		Taxonomy				Methods
CO1	Design simple patterns and pattern plates for the casting process	C3	1		1-4	CT, F
CO2	Specify and select foundry and welding equipment.	C2	1		1-4	CT, Mid Term, F
CO3	Identify and establish correcting measures to eliminate casting and welding defects.	С3	3		5	CT/ASG, F
CO4	Identify the characteristics of an abrasive grinding machine, drilling machine, lathe machine, shaper machine, milling machine	A2	1		8	Mid Term, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to calculate hydrostatic
	parameters and develop the effects of draught change on them.
CO2-PO1	In order to identify the role and extent of hydrostatic parameters on the principles of
	intact and damage stability of ships.
CO3-PO4	To analyze vessels' hydrostatic and hydrodynamic parameters for docking and
	launching calculations.
CO4-PO5	In order to ascertain the level of stability of the vessel and maintenance of upright
	position at lightship/ designated loading conditions.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Practical use of tools and Production

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

Week	Contents
Week 1-3	Foundry
Class 1	Preparation for moulding
Class 2	Casting
Class 3	Final Product
Week 4-6	Welding
Class 4	Basic concepts
Class 5	Preparation
Class 6	Formation of a welded joint
Week 7-9	Lathe Operation
Class 7	Orientation with a lathe
Class 8	Setting measurement
Class 9	Making a threaded screw

Week 10 -11	Milling machine
Class 10	Operation of a Milling Machine
Class 11	Hands on experiment
Week 12-13	Shaper Machine
Class 12	Operation of a Shaper Machine
Class 13	Hands on experiment
Week 14	Quiz/Viva

Co	omponents	Grading	COs	Bloom's Taxonomy
	Lab participation	20%	CO1, CO2, CO3,	
Continuous	and Report	2070	CO4	
Assessment	Labtest-1,Labtest-2	30%	CO1, CO2, CO3,	
(40%)	Lautest-1,Lautest-2	3070	CO4	
(4070)	Project and	25% CO1, CO3		
	Presentation	2570	CO1, CO3	
			CO1	C1,,C3
, T	Lab Quiz	25%	CO2	C1,C2
1	Lao Quiz	2370	CO3	C3, A2
			CO4	C1,C2, C3
To	otal Marks	100%		

REFERENCE BOOKS

- 1. Manufacturing Technology Volume 1 (Foundry, Forming & Welding) (3rd Edition) PN RAO
- 2. Machining Fundamentals-John R Walker
- 3. Principles of Foundry Technology- P. L. Jain.
- 4. Machine Tool Practices-Richard R Kibbe.

Military Institute of Science and Technology

Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code:ME 277 Credit Hours: 3.00
Course Title: Heat Transfer Contact Hours: 3.00

Level and Term: Level 2 Term 2

PRE-REQUISITE

Course Code: NAME 177

Course Title: Thermal Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Compulsory Theoretical course based on heat related equipment design and problem to solve effectively and efficiently.

OBJECTIVES

- 1. Compare why certain materials are better than others for transferring heat.
- 2. Apply to real-world problems regarding heat transfer and materials.
- 3. Apply heat transfer principles to design and to evaluate performance of thermal systems.
- 4. Develop the design of heat exchangers.
- 5. Evaluate the impacts of initial and boundary conditions on the solutions of a particular heat transfer problem.
- 6. Evaluate the relative contributions of different modes of heat transfer.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Measure** rate of heat transfer under various condition through solid, liquid and gas.
- 2. **Analyze** temperature distribution while heat transfer takes place.
- 3. **Analyze** performance of a heat exchanger.
- 4. **Design** insulation and heat exchanger devices.

COURSE CONTENTS

- 1. **Introduction to Heat Transfer:** Conduction Heat Transfer, Thermal Conductivity, Convection Heat Transfer, Radiation Heat Transfer.
- 2. **Steady-State Conduction—One Dimension:** The Plane Wall Insulation and R Values, Radial Systems, Heat-Transfer Coefficient, Critical Thickness of Insulation, Heat-Source Systems, Cylinder with Heat Sources, Conduction-Convection Systems, Fins, Thermal Contact Resistance.
- 3. **Steady-State Conduction—Multiple Dimensions:** Mathematical Analysis of Two-Dimensional, Heat Conduction, Graphical Analysis, The Conduction Shape Factor, Numerical Method of Analysis, Numerical Formulation in Terms of Resistance Elements, Gauss-Seidel Iteration, Accuracy Considerations, Electrical Analogy for Two-Dimensional Conduction.

- 5. **Unsteady-State Conduction:** Lumped-Heat-Capacity System, Transient Heat Flow in a Semi-Infinite Solid, Convection Boundary Conditions, Multidimensional Systems, Transient Numerical Method, Thermal Resistance and Capacity Formulation.
- 6. **Principles of Convection:** Introduction, Viscous Flow, Inviscid Flow, Laminar Boundary Layer on a Flat Plate, Energy Equation of the Boundary Layer, The Thermal Boundary Layer, The Relation Between Fluid Friction and Heat Transfer, Turbulent-Boundary-Layer Heat Transfer, Turbulent-Boundary-Layer Thickness, Heat Transfer in Laminar Tube Flow, Turbulent Flow in a Tube, Heat Transfer in High-SpeedFlow.
- 7. **Empirical and Practical Relations for Forced-Convection Heat Transfer:** Introduction, Empirical Relations for Pipe and Tube Flow, Flow Across Cylinders and Spheres, Flow Across Tube Banks, Liquid-Metal Heat Transfer.
- 8. **Natural Convection Systems:** Free-Convection Heat Transfer on a Vertical Flat Plate, Empirical Relations for Free Convection, Free Convection from Vertical Planes and Cylinders, Free Convection from Horizontal Plates, Free Convection from Inclined Surfaces, Non-Newtonian Fluids, Simplified Equations for Air, Free Convection from Spheres, Free Convection in Enclosed Spaces, Combined Free and ForcedConvection.
- 9. Radiation Heat Transfer: Physical Mechanism, Radiation Properties, Radiation Shape Factor, Relations Between Shape Factors, Heat Exchange Between Non-black bodies, Infinite Parallel Surfaces, Radiation Shields, Gas Radiation, Radiation Network for an Absorbing and Transmitting Medium, Radiation Exchange with Specular Surfaces, Radiation Exchangewith Transmitting, Reflecting, and Absorbing Media, Formulation for Numerical Solution, Solar Radiation, Radiation Properties of the Environment, Effect of Radiation on Temperature Measurement, The Radiation Heat-Transfer Coefficient.
- 10. **Condensation and Boiling Heat Transfer:** Introduction, Condensation Heat-Transfer Phenomena, The Condensation Number, Film Condensation Inside Horizontal Tubes, Boiling Heat Transfer, Simplified Relations for Boiling Heat Transfer with Water, The Heat Pipe.
- 11. **Heat Exchangers:** Introduction, The Overall Heat-Transfer Coefficient, Fouling Factors, Types of Heat Exchangers, The Log Mean Temperature Difference, Effectiveness-NTU Method, Compact Heat Exchangers, Analysis for Variable Properties, Heat-Exchanger Design Considerations.
- 12. **Heat transfer cases in ship design:** Insulation in bulkheads, refrigerated spaces, fish holds in trawlers.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO						(PO)					
140.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Measure rate of heat transfer under various	اء	اء	2/										
COI	condition through solid, liquid and gas	\ \												
CO2	Analyze temperature distribution while heat	1												
CO2	transfer takes place.	\ \												
CO3	Analyze performance of a heat exchanger.													
CO4	Design insulation and heat exchanger devices.													

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Measure rate of heat transfer under	C3	1		1-4	CT, F
	various condition through solid, liquid					
	and gas					
CO2	Analyze temperature distribution while	C2	1		1-4	CT, MT, F
	heat transfer takes place.					
CO3	Analyze performance of a heat	C3	3		5	CT/ASG, F
	exchanger.					
CO4	Design insulation and heat exchanger	A2	1		8	MT, F
	devices					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
CO1-PO1	The knowledge of mathematics and science has to be applied to measure the rate of
	heat transfer for any mode of heat transfer.
CO2-PO1	The knowledge of mathematics, science and engineering has to be applied to
	analyze the temperature distribution.
CO3-PO2	To analyze and evaluate the performance of a heat exchanger
CO4-PO3	Design of insulation and heat exchanger.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3

Total	120
-------	-----

Week	Contents	Assessment
Week 1	Introduction	
Class 1	Introduction	
Class 2	Revision of Thermodynamics	
Class 3	Control mass and control volume approach	
Week 2	Fundamental Laws	CT 1
Class 4	Definition of fundamental law and subsidiary Law	CT 1, Final Exam
Class 5	Fundamental laws that governs heat transfer issues	Tillal Exalli
Class 6	Subsidiary laws for heat transfer problems	
Week 3	Conditions and Mode of Heat Transfer	
Class 7	Steady state condition and isentropic, isobaric condition	
Class 8	Heat conduction mechanism and convection mechanism	
Class 9	Heat radiation mechanism	
Week 4	Equations	
Class 10	Equations for control mass and control volume applying law of	
	conservation of mass	
Class 11	Equations for control mass and control volume applying Newton's second	
	law of motion	CT 2,
Class 12	Equations for control mass and control volume applying 1st law of	Final Exam
	thermodynamics	
Week 5	Subsidiary Laws	
Class 13	Fourier's law of heat conduction and thermal conductivity	
Class 14	Newton's law of cooling and heat transfer coefficient	
Class 15	Stephan-Boltzman law	
Week 6	Heat Conduction	
Class 16	Heat conduction equation through a infinite solid	
Class 17	Heat conduction equation through infinite long hollow cylinder	
Class 18	Thermal resistance.	
Week 7	Equations	
Class 19	General heat conduction equation for an infinite slab in unsteady state	
Class 20	General heat conduction equation for a long hollow cylinder	
Class 21	Problems	Mid Term,
Week 8	Thermal Radiation	Final Exam
Class 22	Basic concepts	
Class 23	Laws of black body radiation	
Class 24	Subsidiary laws that governs thermal radiation	
Week 9	Thermal Radiation	
Class 25	Emissive Power of a black surface	
Class 26	Value of wavelength for emissive power	
Class 27	Planks law and Stephan-Boltzman law	
Week 10	Thermal Radiation	
Class 28	Directional nature of thermal radiation	

Class 29	Heat exchange by radiation between two finite black surfaces	
Class 30	Rate of radiate heat exchange in an enclosure consisting of number of	7
	black surfaces	
Week 11	Fluid Mechanics	Mid Term,
Class 31	Review of fluid mechanics	Final Exam
Class 32	Review of fluid mechanics	7
Class 33	Forced convection	
Week 12	Forced Convection	
Class 34	Forced convection relation with fluid flow	7
Class 35	Heating with constant wall heat flux	7
Class 36	Heating with constant wall temperature	7
Week13	Natural Convection	
Class 37	Natural convection heat transfer	7
Class 38	General equation	7
Class 39	Various conditions	CT 3,
Week 14	Boiling and Condensation	Final Exam
Class 40	Heat exchangers	
Class 41	Boiling and Condensation	
Class 42	Mass Transfer	

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/		CO1CO3	C1, C2
Continuous	Assignment 1-3	20%	CO2	C2, C4
Assessment	Assignment 1-3		CO3	C3, C4
(40%)	Class Participation	5%	CO4	
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1	C1, C2,C3
Fine	nal Exam	60%	CO2	C1, C2,C4
1.1116	ai Exaili	0070	CO3	C3, C4
			CO4	C3, C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Heat Transfer: JackHolman
- 2. Principles of Heat Transfer by Frank Kreith, Raj M. Manglik , Mark S.Bohn
- 3. Engineering Thermodynamics: Work and Heat Transfer, G.F.C. Rogers & Y. R. Mathew, 1967, English Language Book Society & Longmans Green & Co.Ltd.
- 4. Fundamentals of Heat and Mass Transfer: C. P.Kothandaraman
- 5. Fundamentals of Heat and Mass Transfer: Incropera

BASIC SCIENCE AND MATHEMATICS COURSES

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: CHEM 101 Credit Hours: 3.00
Course Title: Fundamentals of Chemistry Contact Hours: 3.00

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

To learn the basic concepts of inorganic, organic and physical chemistry

OBJECTIVES

- 1. To define the different parameter and concepts of inorganic chemistry
- 2. To apply different chemical theory to evaluate structure of molecules.
- 3. To explain the basic concepts of physical chemistry
- 4. To describe basic reaction mechanism of selective organic reactions.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Define** the different parameter and concepts regarding atomic structure, periodic table, chemical bonding, acids and bases.
- 2. **Apply** different theory on chemical bonding and hybridization to evaluate structure of molecules.
- 3. Classify hydrocarbon and explain the mechanism of selective organic reactions
- 4. **Explain** chemical equilibrium, thermo-chemistry, chemical and ionic equilibria, electro-chemical cells.

COURSE CONTENT

- 1. **Atomic Structure:** Atomic structure & quantum theory, Different atom models, Heisenberg's uncertainty principle
- 2. **Periodic Table:** Electronic configurations, Periodic classification of elements, Periodic properties of elements, Properties and uses of noble gases
- 3. Alkali metals: Chemical properties and uses
- 4. **Chemical Bonding:** Types and properties, Lewis theory, VBT, MOT, Hybridization and shapes of molecules
- 5. **Basic concepts of organic chemistry**: History, Physical and chemical properties, Classification
- 6. **Hydrocarbon:** Chemistry of hydrocarbon, Nomenclature, Properties
- 7. **Selective organic reactions:** Oxidation-reduction, Substitution, Addition, Polymerization, Alkylation reactions
- 8. Acids-Bases/Buffer Solution: Different concepts of acids-bases, Buffer solution, Mechanism

- of buffer solution, Henderson-Hasselbalch equation, Water chemistry and pH of water
- 9. Solutions: Solutions and their classification, Unit expressing concentration, Colloid and colloidal solution, Colligative properties and dilute solutions, Raoult's law, Van't Hoff isotherm
- 10. Thermochemistry: Laws of thermochemistry, Enthalpy, Hess's law, Heat of formation, Heat of neutralization, Heat of reaction
- 11. **Electrochemistry:** Electrolytic conduction and its mechanism, Faraday's law, Kohlrausch Law, Debye-Huckel-Onsagar theory, Conductrometric titrations, Different types of cells
- 12. Chemical Equilibria: Equilibrium law/constant, Kp and Kc, Homogeneous and heterogeneous equilibria, Le Chatelier's principle
- 13. Phase Rule: Basic terms and phase rule derivation, Phase Diagram of water and carbon dioxide
- 14. Chemical Kinetics: Pseudo and zero order reaction, Half-life, Determination and factors affecting the rate of a reaction, First order reaction, Second order reaction, Collision theory, Transition state theory

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO))			
110.		1	2	3	4	5	6	7	8	9	10	11	12
	Define the different parameter and concepts												
CO1	regarding atomic structure, periodic table,												
	chemical bonding, acids and bases.												
	Apply different theory on chemical bonding												
CO2	and hybridization to evaluate structure of												
	molecules.												
CO3	Classify hydrocarbon and explain the												
COS	mechanism of selective organic reactions												
CO4	Explain chemical equilibrium, thermo-												
	chemistry, chemical and ionic equilibria,												
	electro-chemical cells.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	C A	KP	Assessment Methods
CO1	Define the different parameter and concepts					CT, F,
	regarding atomic structure, periodic table,					ASG
	chemical bonding, acids and bases.					
CO2	Apply different theory on chemical					CT, MT, F
	bonding and hybridization to evaluate					
	structure of molecules.					
CO3	Classify hydrocarbon and explain the					MT, F,
	mechanism of selective organic reactions					ASG
CO4	Explain chemical equilibrium, thermo-					
	chemistry, chemical and ionic equilibria,					
	electro-chemical cells.					
(61	electro-chemical cells.		- F	1 .		GC G :

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term

Exam)

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment			
Week 1	Atomic Structure				
Class 1	Concepts of atomic structure, Different atom models				
Class 2	Concepts of atomic structure, Different atom models				
Class 3	Hydrogen spectral lines, Quantum numbers				
Week 2	Atomic Structure/Periodic Table				
Class 4 Heisenberg's uncertainty principle					
Class 5 Electronic configuration, periodic classification of elements Class 6 Electronic configuration, periodic classification of elements		CT 1,			
Class 6	Final Exam				
Week 3	Periodic Table/Alkali Metals/Chemical Bonding				
Class 7 Periodic properties of elements, Properties and					
uses of noble gases Class 8 Alkali metals: Chemical properties and uses					
Class 8					
Class 9	Chemical bonding (types, properties, Lewis theory, VBT)				
Week 4	Chemical Bonding				
Class 10	Molecular Orbital Theory (MOT)				
Class 11	Molecular orbital theory (MOT)				
Class 12	Hybridization and shapes of molecules				
Week 5	Chemical Bonding/Organic Chemistry	CT 2,			
Class 13	Hybridization and Shapes of Molecules	Final Exam			
Class 14	Hybridization and Shapes of Molecules				
Class 15	Basic concepts of organic chemistry: History, physical and chemical				

	properties, classification	
Week 6	Organic Chemistry	
Class 16	Chemistry of hydrocarbon, nomenclature and properties	
Class 17	Selective organic reactions: oxidation-reduction, substitution	
Class 18	Selective organic reactions: addition, polymerization, alkylation	
Week 7	Acids-Bases	
Class 19	Different concepts of acids-bases	
Class 20	Buffer solution, mechanism of buffer solution	
Class 21	Henderson-Hasselbach equation	Mid Term,
Week 8	Acids-Bases/Solutions	Final Exam
Class 22	Water chemistry and pH of water	
Class 23	Solutions and their classification, unit expressing concentration	
Class 24	Colloid and colloidal solution	
Week 9	Solutions/Thermochemistry	
Class 25	Colligative properties and dilute solutions	
Class 26	Raoult's law, Van't Hoff isotherm	
Class 27	Thermochemistry: Laws of thermochemistry	
Week 10	Thermochemistry/Electrochemistry	
Class 28	Enthalpy, Hess's law	
Class 29	Heat of formation, heat of neutralization, heat of reaction	
Class 30	Electrolytic conduction and its mechanism	
Week 11	Electrochemistry	
Class 31	Faraday's law, Kohlrausch law, Debye-Huckel-Onsagar theory	Mid Term,
Class 32	Conductrometric titrations	Final Exam
Class 33	Different types of cells	
Week 12	Chemical Equilibrium	
Class 34	Equilibrium law/constant, K _p and K _c	
Class 35	Homogeneous and heterogeneous equilibria	
Class 36	Le Chatelier's principle	
Week13	Phase Rule/Chemical Kinetics	
Class 37	Phase rule: Basic terms and phase rule derivation	
Class 38	Phase diagram of water and carbon dioxide	
Class 39	Pseudo and zero order reaction, Half-life	CT 3,
Week 14	Chemical Kinetics	Final Exam
Class 40	Determination and factors affecting the rate of a reaction	
Class 41	First order reaction, Second order reaction	
Class 42	Collision theory, transition state theory	

Com	ponents	Grading	COs	Blooms Taxonomy
Continuous	Class Test/	20%	CO1, CO2	C1, C2
Assessment	Assignment 1-3	20%	CO2	C3
(40%)	Class Participation	5%	CO3	C3

	Mid term	15%	CO2, CO3	C3
			CO1	C1, C2
Final Exam		60%	CO2	C1, C2,C4
			CO3	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Modern Inorganic Chemistry- S. Z. Haider
- 2. Concise Inorganic Chemistry- J. D. Lee
- 3. A Textbook of Organic Chemistry-Arun Bahl and B. S. Bahl
- 4. Organic Chemistry-Morrison and Boyd
- 5. Principles of Physical Chemistry-Haque and Nawab
- 6. Essentials of Physical Chemistry-Bahl and Tuli
- 7. Physical Chemistry-Atkins

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: CHEM 102 Credit Hours: 1.5
Course Title: Chemistry Lab Contact Hours: 3.00

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

To learn the basic concepts of inorganic and physical chemistry.

OBJECTIVES

To learn inorganic and physical chemistry quantitative analysis techniques.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Define** the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.
- 2. **Explain** the different phenomena regarding iodimetric and iodometric method, complexometric titration etc.
- 3. **Estimate** zinc, ferrous content in water sample by using various titrimetric methods.
- 4. **Summarize** a report of any project work and apply in real life

COURSE CONTENTS

- 1. Standardization of Sodium Hydroxide (NaOH) Solution with Standard Oxalic Acid dihydrate (C2H2O4.2H2O) Solution.
- 2. Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Hydroxide (NaOH) Solution.
- 3. Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Carbonate (Na2CO3) Solution.
- 4. Determination of Calcium (Ca) Content in a Calcium Chloride dihydrate (CaCl2.2H2O) Solution with Standard Di-Sodium Ethylene Diamine Tetra Acetic acid (Na2-EDTA) Solution.
- 5. Standardization of Sodium Thiosulphate Pentahydrate (Na2S2O3.5H2O) Solution with Standard Potassium Dichromate (K2Cr2O7) Solution.
- 6. Estimation of Copper (Cu) Content in a Copper Sulphate Pentahydrate (CuSO4.5H2O) (Blue Vitriol) Solutions by Iodometric Method with Standard Sodium Thiosulphate Pentahydrate (Na₂S₂O₃.5H₂O) Solution.
- 7. Standardization of Potassium Permanganate (KMnO4) Solution with Standard Oxalic Acid dihydrate (C2H2O4.2H2O) Solution.
- 8. Determination of Ferrous (Fe) Content in a Ammonium Ferrous Sulphate (Mohr's Salt) [FeSO4.(NH4)2SO4.6H2O] Solution with Standard Potassium Permanganate (KMnO4)

Solution.

9. Determination of Zinc (Zn) Content in a Zinc Sulphate Heptahydrate (ZnSO4.7H2O) Solution with Standard Di-Sodium EthyleneDiamineTetraAcetic acid (Na2-EDTA) Solution by using Eriochrome black T indicator.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)											
140.			2	3	4	5	6	7	8	9	10	11	12	
CO1	Define the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.	V												
CO2	Explain the different phenomena regarding iodimetric and iodometric method, complexometric titration etc.	V												
CO3	Estimate zinc, ferrous content in water sample by using various titrimetric methods.	V												
CO 4	Summarize a report of any project work and apply in real life	V												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Define the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.	C1-C2	1		3	Class Performance, Experimental Exam, Viva, Quiz
CO2	Explain the different phenomena regarding iodimetric and iodometric method, complexometric titration etc.	СЗ	1		3	Class Performance, Experimental Exam, Viva
CO3	Estimate zinc, ferrous content in water sample by using various titrimetric methods.	СЗ	1		3	Class Performance, Experimental Exam
CO4	Summarize a report of any project work and apply in real life					Report Writing

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

Week	Contents
Week 1	
Class 1	Introduction
Week 2	
Class 2	Standardization of Sodium Hydroxide (NaOH) Solution with Standard Oxalic Acid
	dihydrate (C2H2O4.2H2O) Solution.
Week 3	
Class 3	Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium
	Hydroxide (NaOH) Solution.
Week 4	
Class 4	Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium
	Carbonate (Na2CO3) Solution.
Week 5	
Class 5	Determination of Calcium (Ca) Content in a Calcium Chloride dihydrate
	(CaCl2.2H2O) Solution with Standard Di-Sodium Ethylene
	DiamineTetraAceticAcid (Na2-EDTA) Solution.
Week 6	
Class 6	Standardization of Sodium Thiosulfate Pentahydrate (Na2S2O3.5H2O) Solution
	with Standard Potassium Dichromate ((K2Cr2O7) Solution.
Week 7	
Class 7	Estimation of Copper (Cu) Content in a Copper Sulfate Pentahydrate
	(CuSO4.5H2O) (Blue Vitriol) Solutions by Iodometric Method
	with Standard Sodium Thiosulphate Pentahydrate (Na2S2O3.5H2O Solution.
Week 8	

Class 8	Standardization of Potassium Permanganate (KMnO4) Solution with
	Standard Oxalic Acid dihydrate (C2H2O4.2H2O) Solution.
Week 9	
Class 9	Determination of Ferrous (Fe) Content in a Ammonium Ferrous
	Sulphate (Mohr's Salt) [FeSO4.(NH4)2SO4.6H2O] Solution with
	Standard Potassium Permanganate (KMnO4) Solution.
Week 10	
Class 10	Determination of Zinc (Zn) Content in a Zinc Sulphate Heptahydrate
	(ZnSO4.7H2O) Solution with Standard Di-Sodium EthyleneDiamineTetraAcetic
	acid (Na2-EDTA) (Na -EDTA) Solution by using Eriochrome black T indicator.
Week 11	
Class 11	Practice lab
Week 12	
Class 12	Lab test
Week 13	
Class 13	Quiz test
Week 14	
Class 14	Viva
	,

Com	ponents	Grading	COs	Blooms Taxonomy
Continuous Assessment	Class performance	10%	CO1, CO2,CO3	C1, C2
(40%)	Report writing	30%	CO4	C3
			CO1	C1, C2
Fina	ıl Exam	60%	CO2	C1, C2,C4
			CO3	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Practical Chemistry-A Jabbar & M Haque
- 2. Quantitative Chemical Analysis-A I Vogel
- 3. Analytical Chemistry-Gary D. Christian

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: PHY 101 Credit Hours: 3.00
Course Title: Wave Oscillation, Geometrical Optics and Modern Physics Contact Hours: 3.00

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

To learn the basic concepts of Waves and Oscillations, Optics and Modern physics

OBJECTIVES

- 1. To define the different parameter and concepts of Waves and Oscillations, Optics and Modern physics.
- 2. To explain the basic concepts of Waves and Oscillations, Optics and Modern physics.
- 3. To solve analytical problems regarding Waves and Oscillations, Optics and Modern physics

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Define** the different parameters such as periodic motion, simple harmonic motion, undamped oscillations, interference, diffraction, polarization and prism, photoelectric effect, Compton effect, matter wave, atomic model, radioactive decay, fusion, fission etc.
- 2. **Explain** the wave motion for different systems along with energy, the techniques to derive different formula for interference, diffraction, polarization and prism, different theory regarding modern physics such as special theory of relativity, Compton theory, materials according to magnetic properties, nuclear transformation, and nuclear reaction etc.
- 3. **Solve** quantitative problems in the field of Waves and Oscillations, Optics and Modern physics such as energy of wave motion, wavelength, diffraction pattern, relativistic energy, photon energy, Compton shift, nuclear binding energy etc.

COURSE CONTENTS

1. Waves and Oscillations

Simple Harmonic Motion (SHM) and its properties, Differential equation of a SHM and its solution, total energy of a body executing SHM, average kinetic and potential energy of a body executing SHM, LC oscillatory circuit, Pendulum: simple, compound and torsional pendulum, spring-mass system, two body oscillation and reduced mass, damped harmonic motion and its different condition, forced oscillation and its different condition, resonance, equation of a progressive wave, differential equation of a progressive wave, energy density of wave motion, average kinetic and potential energy of a body executing SHM, Stationary wave

2. **Optics**

Lens, equivalent lens and power, defects of images and different aberrations, Interference of light, Young's double slit experiment, Interference in thin film and Newton's ring method, diffraction of light, diffraction by single slit, diffraction by double slits, Fraunhofer and Fresnel bi-prism, diffraction gratings, polarization of light, Brewster's law, Malus law, polarization by double refraction Nicole prism, optical activity and polarimeters, optical instruments, resolving power of optical instrument, Laser: spontaneous and stimulated emission

3. Modern Physics

Galilean relativity & Reference frame, Special theory of relativity postulates, Galilean transformation, Lorentz Transformation, Length contraction, Time dilation, Velocity addition, relativity of mass, mass energy relation, Momentum energy relation, Photoelectric effect, Compton effect, de Broglie matter wave, Bohr atom model and explanation, atomic orbital and energy equation, classification of nucleus, nuclear binding energy, radioactivity, radioactive decay law, half-life, mean life, nuclear reaction, introduction to nuclear reactor

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PO)											
110.	COURSE OUTCOMES (COS)		2	3	4	5	6	7	8	9	10	11	12
CO1	Define the different parameters such as periodic motion, simple harmonic motion, undamped oscillations, interference, diffraction, polarization and prism, photoelectric effect, Compton effect, matter wave, atomic model, radioactive decay, fusion, fission etc.	V											
CO2	Explain the wave motion for different systems along with energy, the techniques to derive different formula for interference, diffraction, polarization and prism, different theories regarding modern physics such as special theory of relativity, Compton theory, materials according to magnetic properties, nuclear transformation and nuclear reaction etc.	√											
CO3	Solve quantitative problems in the field of Waves and Oscillations, Optics and Modern physics such as energy of wave motion, wavelength, diffraction pattern, relativistic energy, photon energy, Compton shift, nuclear binding energy etc.	V											

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Define the different parameters such as	C1-C2	1		3	CT, F,

	periodic motion, simple harmonic motion, undamped oscillations, interference,					ASG
	diffraction, polarization and prism,					
	photoelectric effect, Compton effect,					
	matter wave, atomic model, radioactive					
	decay, fusion, fission etc.					
	Explain the wave motion for different					
	systems along with energy, the techniques					
	to derive different formula for					
	interference, diffraction, polarization and					
CO2	prism, different theories regarding modern	C3	1		3	CT, MT, F
	physics such as special theory of relativity,					
	Compton theory, materials according to					
	magnetic properties, nuclear					
	transformation and nuclear reaction etc.					
	Solve quantitative problems in the field of					
	Waves and Oscillations, Optics and				3	
CO3	Modern physics such as energy of wave	C2	1			MTEASC
003	motion, wavelength, diffraction pattern,	C3		3	MT, F, ASG	
	relativistic energy, photon energy,					
	Compton shift, nuclear binding energy etc.					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Class 1 Introductory class: Brief discussion on total syllabus, basic requirements of the course, assessment of the course Simple harmonic motion (SHM) and its differential equations, graphical representation of SHM Class 3 Average K.E and total energy Class 4 Spring-mass system, electric oscillatory circuit Class 5 Simple, compound and torsional pendulum Class 6 Combination of two SHM Week 3 Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference in Thin films, Newton's ring Class 19 Diffraction by single slit Mid Term, Final Exam Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 27 Laser & its applications Week 10 Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression	Week	Contents	Assessment
Class 2 Simple harmonic motion (SHM) and its differential equations, graphical representation of SHM	Week 1		
Class 2 Simple harmonic motion (SHM) and its differential equations, graphical representation of SHM Class 3 Syering-mass system, electric oscillatory circuit Class 4 Spring-mass system, electric oscillatory circuit Class 5 Simple, compound and torsional pendulum Class 6 Combination of two SHM Week 3 Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Displacement equation of forced oscillation, resonance Week 5 Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction by single slit Week 8 Class 22 Diffraction in Fresnel & Fraunhofer diffraction Class 21 Diffraction by double slit, Diffraction gratings Class 22 Diffraction and Production and analysis of polarized light Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and the sexpression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	Class 1		
raphical representation of SHM Week 2 Class 3 Average K.E. and total energy Week 2 Class 4 Spring-mass system, electric oscillatory circuit Class 5 Simple, compound and torsional pendulum Class 6 Combination of two SHM Week 3 Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Diffraction by single slit Week 8 Class 20 Diffraction by single slit Mid Term, Final Exam Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Defects of repatativity: Forentz Transformations, Length Contraction and Fine dilation Class 29 Theory of relativity: Forentz Transformations, Length Contraction and Fine dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and sits expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			
Class 3 Average K.Ē and total energy Week 2 Spring-mass system, electric oscillatory circuit Class 5 Simple, compound and torsional pendulum Class 6 Combination of two SHM Week 3 Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction by single slit Week 8 Sclass 22 Diffraction by single slit Mid Term, Final Exam Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	Class 2		
CT 1, Class 4 Spring-mass system electric oscillatory circuit Simple, compound and torsional pendulum Class 5 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of forced oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance CT 2, Final Exam Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 20 Diffraction is Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Final Exam Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Fine dilation Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Related numerical Mid Term, Final Exam Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical Cass 31 Cass 32 Cass 33 Cass 34 Cass 34 Cass 34 Cass			1
Class 4 Spring-mass system, electric oscillatory circuit Class 5 Simple, compound and torsional pendulum Class 6 Combination of two SHM Week 3 Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 20 Diffraction by single slit Week 3 Class 21 Diffraction by single slit Week 3 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Average K.E and total energy	CTL 1
Class 5 Simple, compound and torsional pendulum Class 6 Combination of two SHM Week 3 Class 7 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Class 13 Plane progressive wave, energy density of wave Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction by single slit Week 8 Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Brewster's and Malus law Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			
Class 6 Combination of two SHM Week 3 Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction by single slit Week 8 Class 21 Diffraction by double slit, Diffraction gratings Class 22 Diffraction and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			Finai Exam
Class 3 Combination of two SHM			1
Class 7 Combination of two SHM Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Class 13 Plane progressive wave, energy density of wave Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction is Fresnel & Fraunhofer diffraction Class 21 Diffraction by double slit, Diffraction gratings Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 8 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Combination of two SHM	
Class 8 Two body oscillations, reduced mass Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction by single slit Class 21 Diffraction by single slit Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			1
Class 9 Damped oscillations and its differential equation Week 4 Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Diffraction by single slit Week 8 Class 20 Diffraction by single slit Week 8 Class 21 Diffraction by double slit, Diffraction gratings Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			1
Class 10		•	1
Class 10 Displacement equation of damped oscillation, electric damped oscillatory circuit Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Damped oscillations and its differential equation	
Class 11 Forced oscillation and its differential equation			-
Class 11 Forced oscillation and its differential equation Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	Class 10		
Class 12 Displacement equation of forced oscillation, resonance Week 5 Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	C1 11		_
Class 13			CT 2
Class 13 Plane progressive wave, energy density of wave Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 29 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Displacement equation of forced oscillation, resonance	· ·
Class 14 Stationary wave Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			Filiai Exaili
Class 15 Lens and combination of lenses, power of lens Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		, o	-
Week 6 Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction : Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Final Exam Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Week 10 Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression. Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			-
Class 16 Defects of images and different aberrations Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Lens and combination of lenses, power of lens	-
Class 17 Defects of images and different aberrations Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Defects of impacts and different charactions	-
Class 18 Interference of light, young's double slit experiment Week 7 Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			-
Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			-
Class 19 Interference in Thin films, Newton's ring Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		interference of fight, young's double sitt experiment	
Class 20 Diffraction: Fresnel & Fraunhofer diffraction Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Interference in Thin films, Newton's ring	-
Class 21 Diffraction by single slit Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		, Ç	+
Week 8 Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			Mid Term
Class 22 Diffraction by double slit, Diffraction gratings Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Diffaction by single sin	· · · · · · · · · · · · · · · · · · ·
Class 23 Polarization and Production and analysis of polarized light Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Diffraction by double slit. Diffraction gratings	
Class 24 Optics of crystals, Nicole prism Week 9 Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			-
Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			1
Class 25 Brewster's and Malus law Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		opties of crystals, recore prism	-
Class 26 Optical activity and polarimeter Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Brewster's and Malus law	-
Class 27 Laser & its applications Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			-
Week 10 Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		A .	
Class 28 Theory of relativity: Frame of Reference, Postulates of special relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical			-
relativity, Galilean Transformation Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical		Theory of relativity: Frame of Reference Postulates of special	1
Class 29 Theory of relativity: Lorentz Transformations, Length Contraction and Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	C1035 20		
Time dilation Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	Class 29		1
Class 30 Velocity addition, Relativistic mass: Concept of relativistic mass and its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	2		
its expression Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	Class 30		Mid Term,
Week 11 Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	21400		Final Exam
Class 31 Theory of relativity: Mass and Energy equivalence equation and concept of Massless particle and its expression. Related numerical	Week 11		1
concept of Massless particle and its expression. Related numerical	Class 31	Theory of relativity: Mass and Energy equivalence equation and	1
problems			

Class 32	Photoelectric Effect, photocurrent and work function, kinetic energy,	
	stopping potential	
Class 33	photoelectric equation, characteristics of photoelectric effect	
Week 12		
Class 34	Compton effect: Definition, Compton wavelength shift, limitation	
Class 35	De Broglie Concept, Condition for wave and particle behavior, Bohr	
	atomic model	
Class 36	Expression for Bohr radii and orbital energy for hydrogen atom	
Week13		
Class 37	Classification of Nucleus, nuclear binding energy	
Class 38	Radioactivity and its transformation, Radioactive Decay Law	
Class 39	Half- life, Mean life, nuclear reaction	CT 3,
Week 14		Final Exam
Class 40	Concept of Fusion, Fission and nuclear chain reaction]
Class 41	General idea on nuclear reactor and nuclear power plant	
Class 42	Follow up of the course]

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2	C1, C2
Continuous	Assignment 1-3	2070	CO2	C3
Assessment	Class	5%	CO3	C3
(40%)	Participation	370	CO3	CS
	Mid term	15%	CO2, CO3	C3
			CO1	C1, C2
Fina	al Exam	60%	CO2	C1, C2,C4
			CO3	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Fundamentals of Physics : Halliday, Resnick and Walker
- 2. Physics for Scientists and Engineers: Serway and Jewett
- 3. Concept of Modern Physics: Arthur Beiser
- 4. University Physics with Modern Physics: Hugh D. Young and Roger A. Freedman
- 5. Modern Physics for Science and Engineering: Marshall L. Burns
- 6. Waves and Oscillations: Walter Fox Smith
- 7. The Physics of Vibrations and Waves: H. J. Pain
- 8. Waves and Oscillations: BrijLal and Subramannyam
- 9. Fundamental of Optics: Francis A. Jenkins and Harvey E. White
- 10. **Introduction to Modern Optics**: Grant R. Fowles
- 11. Fundamental Optical Design: Michael J. Kidger

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: PHY 102 Credit Hours: 3.00
Course Title: Physics Lab Contact Hours: 3.00

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

To learn the basic concepts of Waves and Oscillations, Optics and Modern physics

OBJECTIVES

To develop basic engineering knowledge practically.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Define** the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.
- 2. **Describe** different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.
- Construct experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.
- 4. **Prepare** a report for an experimental work.

COURSE CONTENTS

- 1. Determination of specific resistance of materials of a wire by using Meter Bridge,
- 2. Determination of a high resistance by the method of deflection,
- 3. Determination of ECE of copper by using copper voltameter,
- 4. Determination of the wavelength of light by using diffraction grating,
- 5. Determination of the focal length of a plano-convex lens by Newton's ring method,
- 6. Determination of the specific rotation of sugar by poralimeter
- 7. Determination of the conductivity of a bad conductor by Lee's method,
- 8. Determination of the acceleration due to gravity by means of compound pendulum,
- 9. Determination of the spring constant and the rigidity modulus of a spiral spring,
- 10. Verification of the law of conservation of linear momentum,
- 11. Determination of the Young's modulus of bar by bending method,
- 12. Determination of the Planck's constant using photoelectric effect,
- 13. Determination of focal length of a concave lens by auxiliary lens method,
- 14. Determination of specific heat of a liquid by the method of cooling

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (PC				(PO))						
110.	COURSE OUTCOMES (COS)	1 2		3	4	5	6	7	8	9	10	11	12
CO1	Define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	√											
CO2	Describe different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	V											
CO3	Construct experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	V											
CO 4	Prepare a report for an experimental work.	$\sqrt{}$											

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	СР	CA	KP	Assessment
110.	COURSE OUTCOMES (COS)	Taxonomy	CI	CA	IXI	Methods
CO1	Define the different parameters					Class
	regarding waves and oscillations,					Performance,
	optics, mechanics, electricity, modern	C1-C2	1		3	Experimental
	physics and thermal physics etc.					Exam, Viva,
						Quiz
CO2	Describe different phenomena					Class
	regarding waves and oscillations,	C3	1		3	Performance,
	optics, mechanics, electricity, modern	CS	1		3	Experimental
	physics and thermal physics etc.					Exam, Viva
CO3	Construct experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	C3	1		3	Class Performance, Experimental Exam
CO4	Prepare a report for an experimental work.	C4				Report Writing

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	9
Preparation of Quiz	9
Preparation of Presentation	5
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	120

Week	Contents
Week 1	
Class 1	Introductory class: Brief discussion on total syllabus, basic requirements of the
	course, evaluation system of the course, grouping, visit different section of the
	laboratory, introduction to different basic equipment's
Week 2	
Class 2	Determination of specific resistance of materials of a wire by using Meter Bridge /
	Determination of focal length of a concave lens by auxiliary lens method.
Week 3	
Class 3	Determination of a high resistance by the method of deflection/ Determination of
	specific heat of a liquid by the method of cooling
Week 4	
Class 4	Determination of ECE of copper by using copper voltameter / Determination
	of the Young's modulus of bar by bending method
Week 5	
Class 5	Determination of the wavelength of light by using diffraction grating
Week 6	
Class 6	Determination of the focal length of a plano-convex lens by Newton's ring method
Week 7	
Class 7	Determination of the specific rotation of sugar by poralimeter
Week 8	
Class 8	Determination of the conductivity of a bad conductor by Lee's method /
	Verification of the law of conservation of linear momentum
Week 9	
Class 9	Determination of the acceleration due to gravity by means of compound pendulum
Week 10	
Class 10	Determination of the spring constant and the rigidity modulus of a spiral spring
Week 11	
Class 11	Determination of the Planck's constant using photoelectric effect

Week 12	
Class 12	Viva & experimental exam

Com	ponents	Grading	COs	Blooms Taxonomy		
Continuous Assessment	Class performance	10% CO1, CO2,CO3		C1, C2		
(40%)	Report writing	30%	CO4	C3		
			CO1	C1, C2		
Fina	Final Exam		l Exam	60%	CO2	C1, C2,C4
			CO3	C4		
Tota	al Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1. Practical Physics: G. L. Squires

2. **Practical Physics**: Dr Giasuddin and Md. Sahabuddin.

3. **B.Sc. Practical Physics**: C. L Arora

4. **Practical Physics**: S.L. Gupta and V. Kumar

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: PHY 113 Credit Hours: 3.00
Course Title: Structure of Matter, Electricity and Magnetism Contact Hours: 3.00

Level and Term: Level 1 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is one of the basic physics in the field of Solid State Physics and Electricity & Magnetism. The course will be emphasized the basic concepts, theories and solve quantitative problems which can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVES

- 1. To define the different parameters and concepts of Structure of Matter and Electricity & Magnetism.
- 2. To explain the basic theories of Structure of Matter and Electricity & Magnetism.
- 3. To solve numerical problems regarding Structure of Matter and Electricity & Magnetism.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Define** different basic parameters and laws in the field of Structure of Matter and Electricity & Magnetism such as lattice, crystal structure, bonds in solids, non-crystalline solids, alloys, Bragg's law, Coulomb's law, Gauss' law, dielectrics, capacitance, resistance etc.
- 2. **Explain** different basic theories in the field of Structure of Matter and Electricity & Magnetism such as band theory of solids, Inter atomic distances and forces of equilibrium, resistivity-an atomic view, atomic view of dielectrics, magnetization curves etc.
- 3. **Solve** quantitative problems in the field of Structure of Matter and Electricity & Magnetism such as energy of packing factor in solids; inter atomic distances, Calculation of electric potential, capacitance for different capacitors, energy store in a capacitor, inductance of solenoid etc.

COURSE CONTENTS

1. Structure of Matter:

- a. States of matter: solid, liquid, and gas
- b. Classification of solids: amorphous, crystalline, ceramic and polymers
- c. Atomic arrangement in solid & Crystal systems, lattice parameters, different crystal structure, packing factor in solids, Miller indices,
- d. Zinc blend structure, diamond structure
- e. Allotropy and polymorphism

- f. Bragg's law, X-ray diffraction
- g. different types of bonds in solids, Inter atomic distances and forces of equilibrium
- h. Defects in solids, band theory of solids,
- i. Distinction between metal, insulator and semiconductor
- j. Intrinsic and extrinsic semiconductor, plasmons, polariotons, polarons, exitons, phonons, noncrystalline solids, alloys
- k. Extensive and Intensive properties of matter, some techniques for materials characterization.

2. Electricity & Magnetism:

- a. Electric charges and Coulomb's law, quantization of charge, electric field, electric field due to point charge, dipole, charged rod and charged ring
- b. electric flux and calculation of flux, Gauss' law, application of Gauss' law for point charge and infinite charged rod
- c. electric potential energy and electric potential, Calculation of electric potential due to point charge, dipole, charged rod, charged ring and charged disc, capacitors, capacitance for different capacitors, energy store in a capacitor, dielectrics and atomic view of dielectrics and Gauss' law with dielectrics
- d. Current density, drift speed, resistances, ohm's law and resistivity-an atomic view, Ampere's law, solenoid, toroid.
- e. Faraday's law, self-inductance and mutual inductance, inductance of solenoid, magnetic field intensity, permeability, susceptibility
- f. Magnetization, classification of magnetic materials, magnetization curves, M-H hysteresis loop, soft and hard magnetic materials, Super paramagentism, Maxwell equations.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	No. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)										
140.			2	3	4	5	6	7	8	9	10	11	12
CO1	Define different basic parameters and laws in												
	the field of Structure of Matter and Electricity												
	& Magnetism such as lattice, crystal structure,												
	bonds in solids, non-crystalline solids, alloys,	٧											
	Bragg's law, Coulomb's law, Gauss' law,												
	dielectrics, capacitance, resistance etc.												
CO2	Explain different basic theories in the field of												
	Structure of Matter and Electricity &												
	Magnetism such as band theory of solids,	V											
	Inter atomic distances and forces of	V											
	equilibrium, resistivity-an atomic view, atomic												
	view of dielectrics, magnetization curves etc.												
	Solve quantitative problems in the field of												
	Structure of Matter and Electricity &												
CO3	Magnetism such as energy of packing factor												
	in solids, Inter atomic distances, Calculation												
	of electric potential, capacitance for different												
	capacitors, energy store in a capacitor,												
	inductance of solenoid etc.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Define different basic parameters and laws in the field of Structure of Matter and Electricity & Magnetism such as lattice, crystal structure, bonds in solids, non-crystalline solids, alloys, Bragg's law, Coulomb's law, Gauss' law, dielectrics, capacitance, resistance etc.	C1	-	-	1	CT, F, MT
CO2	Explain different basic theories in the field of Structure of Matter and Electricity & Magnetism such as band theory of solids, Inter atomic distances and forces of equilibrium, resistivity-an atomic view, atomic view of dielectrics, magnetization curves etc.	C1	-	-	1	F, MT
CO3	Solve quantitative problems in the field of Structure of Matter and Electricity & Magnetism such as energy of packing factor in solids, Inter atomic distances, Calculation of electric potential, capacitance for different capacitors, energy store in a capacitor, inductance of solenoid etc.	C2	-	-	2	CT, F, MT, ASG

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications						
CO1-PO1	The conceptual knowledge of the natural sciences applicable to the engineering						
	discipline						
CO2-PO1	The theory-based knowledge of the natural sciences applicable to the engineering						
	discipline						
CO3-PO1	The numerical analysis based knowledge of the natural sciences applicable to the						
	engineering						

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement
Teaching and Dearming Teat vices	Linguagement

	(hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents		
Week 1			
Class 1	Introduction of course and elementary discussion		
Class 2	, T,		
	crystalline, ceramic and polymers		
Class 3	atomic arrangement in solid & Crystal systems		
Week 2			
Class 4	atomic arrangement in solid & Crystal systems	CT 1,	
Class 5	lattice parameters, different crystal structure	Final Exam	
Class 6	packing factor in solids		
Week 3			
Class 7	packing factor in solids		
Class 8	Miller indices		
Class 9	Zinc blend structure, diamond structure, allotropy and polymorphism,		
Week 4			
Class 10	Bragg's law, X-ray diffraction		
Class 11	different types of bonds in solids		
Class 12	different types of bonds in solids		
Week 5		CT 2,	
Class 13	Inter atomic distances and forces of equilibrium	Final Exam	
Class 14	Defects in solids		
Class 15	Defects in solids		
Week 6			
Class 16	Band theory of solids, Distinction between metal, insulator and		
	semiconductor		
Class 17	Intrinsic and extrinsic semiconductor		
Class 18	Plasmons, polariotons, polarons, exitons, phonons		
Week 7			
Class 19	Non-crystalline solids, alloys		
Class 20	Extensive and Intensive properties of matter, some techniques for		
	materials characterization	Mid Term, Final Exam	
Class 21	Some techniques for materials characterization		
Week 8			
Class 22	Electric charges and Coulomb's law, quantization of charge		
Class 23	Electric field, electric field due to point charge		

Class 24	Electric field due to dipole, charged rod and charged ring				
Week 9					
Class 25	Electric flux and calculation of flux]			
Class 26	Gauss' law, Gauss' law and Coulomb's law for a point charge				
Class 27	Application of Gauss' law for infinite charged rod				
Week 10					
Class 28	electric potential energy and electric potential, Calculation of electric potential from field and vice versa				
Class 29	Calculation of electric potential due to point charge, dipole				
Class 30	Calculation of electric potential due to charged rod, charged ring and charged disc	Mid Term,			
Week 11		Final Exam			
Class 31	capacitors, capacitance for different capacitors]			
Class 32	energy store in a capacitor, dielectrics and atomic view of dielectrics and Gauss' law with dielectrics				
Class 33	Current density, drift speed, resistances	1			
Week 12		1			
Class 34	ohm's law and resistivity-an atomic view, Biot-Severt law]			
Class 35	Ampere's law, solenoid, toroid]			
Class 36	Faraday's law, self-inductance and mutual inductance, inductance of solenoid				
Week13					
Class 37	magnetic field intensity, permeability, susceptibility, magnetization				
Class 38	classification of magnetic materials				
Class 39	magnetization curves, susceptibility curves	CT 3,			
Week 14		Final Exam			
Class 40	M-H hysteresis loop, soft and hard magnetic materials				
Class 41	Superparamagentism, Maxwell equations				
Class 42	Course review				

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO3	C1, C2
Continuous	Assignment 1-3	2070	CO1, CO3	C1, C2
Assessment	Class	5%	CO1, CO2	C1, C2
(40%)	Participation	3% CO1, CO2	CO1, CO2	C1, C2
	Mid term	15%	CO1,CO2, CO3	C1, C2
Fina	al Exam	60%	CO1,CO2, CO3	CO1, CO2, CO3
Tota	ıl Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Fundamentals of Physics: Halliday, Resnick and Walker
- 2. Physics for Scientists and Engineers: Serway and Jewett
- 3. University Physics with Modern Physics: Hugh D. Young and Roger A. Freedman
- 4. Introduction to Solid State Physics: Charles Kittle
- 5. Solid State Physics: S. O. Pillai
- 6. Solid State Physics: Ali Omar

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: MATH 101 Credit Hours: 3.00
Course Title: Differential and Integral Calculus Contact Hours: 3.00

Level and Term: Level 1 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Purpose of this course is to introduce basic knowledge of Differential and Integral Calculus and use it to engineering study.

OBJECTIVES

- 1. To impart basic knowledge on differential and integral Calculus to solve engineering problems and other applied problems.
- 2. Developing understanding some of the important aspects of rate of change, area, tangent, normal and volume.
- 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing, decreasing, maximum and minimum values of a function

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Compute** different engineering calculations based on differential and integral calculus.
- 2. **Comprehend** basic ideas of rate of change, area, tangent, normal and volume.
- 3. **Prepare** necessary calculations based on differential and integral calculus.
- 4. **Perform** functional analysis calculations such as increasing, decreasing, maximum and minimum values of a function.

COURSE CONTENTS

- a. **Differential Calculus:** Introduction, Differential Calculus for Engineering, Function and Limit, Continuity and Differentiability, Successive Differentiation, Leibnittz's Theorem, Rolle's Theorem, Mean Value Theorem, Taylor's theorem, Expansion of Finite and Infinite forms, Lagrange's form of remainder, Cauchy's form of remainder, Expansion of functions differentiation and integration, Indeterminate form, Cartesian differentiation, Euler's theorem, Tangent, sub tangent and Normal, sub normal, Maxima and Minima, Curvature, Asymptotes, Partial differentiation.
- b. **Integral Calculus:** Definition of Integration, Importance of Integration in Eng., Integration by substitution, Integration by parts, Standard integrals, Integration by successive reduction, Definite integrals and its use, Integration as a limit of sum, summing series, Walli's formula, Improper Integrals, beta and gamma function, multiple integral and its application, Area, volume of solid revolution, Area under a plain curve, Area of the region enclosed by two

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PF	RO	GF	RAI	И (ΟU	TC	O	MES	(PO))
140.			2	3	4	5	6	7	8	9	10	11	12
CO1	Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals	V											
CO2	Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.	1											
CO3	Calculate the length, area, volume, center of gravity and average value related to engineering study	V											

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's	CP	CA	KP	Assessment
		Taxonomy				Methods
CO1	Define the limit, continuity and	C1-C2	1		3	CT, F,
	differentiability of functions, identify					ASG
	the rate of change of a function with					
	respect to independent variables and					
	describe the different techniques of					
	evaluating indefinite and definite					
	integrals.					
CO2	Apply the concepts or techniques of	C3	1		3	CT, MT, F
	differentiation and integration to solve					
	the problems related to engineering					
	study.					
CO3	Calculate the length, area, volume,	C3	1		3	MT, F, ASG
	center of gravity and average value					
	related to engineering study					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications						
CO1-PO1	The knowledge of mathematics, science and engineering sciences has to be applied						
	to describe the complete concept of differential and integral calculus.						

CO2-PO1	To apply proper and improper integral in the field of engineering study, the
	knowledge of mathematics, science and engineering sciences is required.
CO3-PO1	In order to calculate volume, average, center of gravity and area of any solid
	revolution object, the knowledge of mathematics and engineering sciences is needed.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1		
Class 1	Introduction to Differential Calculus for Engineering study, Limit of a	
	function and its properties.	
Class 2	Basic limit theorems with proofs, Limit of infinity and infinite limit,	1
	Sandwich (Squeezing) theorem with problems.	
Class 3	Concept of Differentiation, definition, classification of discontinuity and	1
	solving problems	CT 1,
Week 2		Final Exam
Class 4	Basic concept of Differentiability, definition, derivative of a function,	
	differentiable function.	
Class 5	Differentiability – one sided derivatives (R.H.D and L.H.D), solving	
	problems	
Class 6	Successive differentiation – Concept and problem solving	
Week 3		
Class 7	Leibnitz's theorem and its applications	
Class 8	Determination of $(y_n)_0$	
Class 9	Mean Value theorem, Taylor theorem	
Week 4		

Class 10	Expansion of finite and infinite forms, Lagrange's and Cauchy's form of remainder.	
Class 11	Indeterminate forms – concept and problem solving	•
Class 12	L'Hospital's rules with application	CT 2,
Week 5		Final Exam
Class 13	Partial differentiation - partial derivatives of a function of two variables and problems	
Class 14	Partial differentiation - partial derivatives of a homogeneous function of two variables, Euler's theorem for two variables and problems	
Class 15	Partial differentiation - partial derivatives of a homogeneous function of several variables, Euler's theorem for several (three and m) variables and problem solving	
Week 6		
Class 16	Tangents and Normals – Tangents and Normals in Cartesian, equation of tangent at the origin, equation of normal of functions of explicit and implicit forms, Angle between two intersection of two curves; problem solving	
Class 17	Tangents and Normals – Tangents and Normals in polar, Angle between two intersection of two curves; problem solving	
Class 18	Tangents and Normals – Subtangent and subnormals in Cartesian and polar coordinate; problem solving.	
Week 7		
Class 19	maxima and minima of functions of single variables – concept, Increasing and decreasing function, Concave up and down with problems	
Class 20	Curvature	Mid Term,
Class 21	Asymptotes	Final Exam
Week 8		•
Class 22	Introduction to integral calculus	•
Class 23	Standard integrals – concept of definite and indefinite integrals, applications.	
Class 24	Indefinite integrals – Method of substitution, Techniques of integration	
Week 9		
Class 25	Indefinite integrals – Integration by parts, Special types of integration, integration by partial fraction	
Class 26	Integration by the method of successive reduction	-
Class 27	Definite integrals – definite integrals with properties and problems	
Week 10		-
Class 28	Definite integrals – Reduction formula, Walli's formula	-
Class 29	Definite integrals – definite integral as the limit of the sum	
Class 30	Beta function – concept and problem solving	1
Week 11		1
Class 31	Gamma function - concept and problem solving	Mid Term,
Class 32	Relation between beta and gamma function, Legendre duplication formula, problems and applications	Final Exam
Class 33	Multiple integrals – double integrals	-
	principle integrals double integrals	

Week 12		
Class 34	Multiple integrals – triple integrals	
Class 35	Multiple integrals – successive integration for two and three variables	
Class 36	Area in Cartesian	
Week13		
Class 37	Area in polar	
Class 38	Volume of solid revolution	
Class 39	Area under a plain curve in Cartesian and polar coordinates	CT 3,
Week 14		Final Exam
Class 40	Area of a region enclosed by two curves in Cartesian and polar	
	coordinates	
Class 41	Arc lengths of curves in Cartesian coordinates	
Class 42	Arc lengths of curves in polar coordinates	

Components		Grading	COs	Blooms Taxonomy
	Class Test/		CO1, CO2	C1, C2
Continuous	Assignment 1-3	20%	CO2	C3
Assessment (40%)	5%		CO3	C3
	Mid term	15%	CO2, CO3	C3
			CO1	C1, C2
Final Exam		60%	CO2	C1, C2,C4
			CO3	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Calculus (9th Edition) by Howard Anton (Author), Irl C. Bivens (Author), Stephen Davis.
- 2. Calculus: An Intuitive and Physical Approach by Morris Kline.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: MATH 103 Credit Hours: 3.00
Course Title: Ordinary and Partial Differential Equations & Matrix Contact Hours: 3.00

Level and Term: Level 1 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Purpose of this course is to introduce basic knowledge of ordinary and partial differential equations and use it to engineering study.

OBJECTIVES

- 1. To impart basic knowledge on ordinary and partial differential equations to solve engineering problems and other applied problems.
- 2. To develop understanding of some of the important aspects of ordinary and partial differential equations.
- 3. To provide knowledge on using concept of differential equations in engineering problems and solve other applied problems.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Compute** different engineering calculations based on differential equations.
- 2. **Comprehend** basic ideas of differential equations and related theories.
- 3. **Prepare** necessary calculations based on ordinary and partial differential equations.
- 4. **Perform** differential equations calculations based on heat flow, fluid flow, temperature distribution etc.

COURSE CONTENTS

- 1. Differential Equations: Introduction & Formulation of DE in Eng, Degree and order of ODE, solution of first order but higher degree DE by various methods, solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs, Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial, linear first order PDE, Non-linear first order PDE, Standard form DEs of higher order and wave equation, particular solutions with boundary and initial condition, Non-linear PDE of order one, Charpit's method, Linear PDE with constant coefficients, Applications of DE
- 2. Matrix: Definition of matrix, different types of matrices, algebra of matrices, transpose and adjoint of a matrix and inverse matrix, rank and elementary transformation, solution of linear equation or system of linear equation, matrix polynomials determination characteristic roots and vectors, characteristic subspace of matrix and Eigen values and Eigen vectors, Cayley Hamilton theorem.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)	PROGRAM OUTCOMES (POs)								3)			
140.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	Define various types of differential equations,												
CO1	and identify the classifications of ordinary and												
	partial differential equations.												
	Apply the knowledge to identify and solve												
CO2	ordinary and partial differential equations.												
	Apply the techniques to obtain solutions for												
CO3	problems based on heat flow, fluid flow,												
	temperature distribution etc.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Define various types of differential equations, and identify the classifications of ordinary and partial differential equations.	C1, C2	1		3	T, F, ASG
CO2	Apply the knowledge to identify and solve ordinary and partial differential equations.	C3	1		3	T, MT, F
CO3	Apply the technique to obtain the inverse matrix that solve the system of linear equations	С3	1		3	MT, F, ASG

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications					
CO1-PO1	The knowledge of mathematics, science and engineering sciences has to be applied					
	to describe for the physical explanation of differential equations.					
CO2-PO1	The application of differential equations need the knowledge of mathematics,					
	science and engineering for describing exponential growth and decay, the					
	population growth of species or change in investment return over time.					
CO3-PO1	The solution of different real world phenomena like heat flow, fluid flow,					
	temperature distribution, loading calculations etc require the concept of ordinary and					
	partial differential equations.					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project,

Q-Quiz, ASG-Assignment, Pr-Presentation, R-Report, $F-Final\ Exam$, $MT-Mid\ Term\ Exam$)

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1		
Class 1	Introduction & Formulation of DE in Eng, Degree and order of ODE	
Class 2	Introduction & Formulation of DE in Eng, Degree and order of ODE	
Class 3	Introduction & Formulation of DE in Eng, Degree and order of ODE	
Week 2		
Class 4	Solution of first order but higher degree DE by various methods	
Class 5	Solution of first order but higher degree DE by various methods	CT 1,
Class 6	Solution of first order but higher degree DE by various methods	Final Exam
Week 3		
Class 7	Solution of general DEs of second and higher order, Solution of Euler's	
	homogeneous linear DEs	
Class 8	Solution of general DEs of second and higher order, Solution of Euler's	
	homogeneous linear DEs	
Class 9	Solution of general DEs of second and higher order, Solution of Euler's	
	homogeneous linear DEs	
Week 4		
Class 10	Solution of DEs by methods based on factorization, Frobenious	
	methods, Bessel's functions, Legendre's polynomial	
Class 11	Solution of DEs by methods based on factorization, Frobenious	
	methods, Bessel's functions, Legendre's polynomial	CT 2,
Class 12	Solution of DEs by methods based on factorization, Frobenious	Final Exam
	methods, Bessel's functions, Legendre's polynomial	
Week 5		
Class 13	Linear first order PDE, Non linear first order PDE	
Class 14	Standard form DEs of higher order and wave equation	

Class 15	Standard form DEs of higher order and wave equation	
Week 6		
Class 16	Particular solutions with boundary and initial condition, Non-linear	
	PDE of order one: Charpit's method	
Class 17	Particular solutions with boundary and initial condition, Non-linear	
	PDE of order one: Charpit's method	
Class 18	Particular solutions with boundary and initial condition, Non-linear	
	PDE of order one: Charpit's method	
Week 7		
Class 19	Linear PDE with constant coefficients, Applications of DE	
Class 20	Linear PDE with constant coefficients, Applications of DE	
Class 21	Linear PDE with constant coefficients, Applications of DE	Mid Term,
Week 8		Final Exam
Class 22	Wave equations	
Class 23	Particular solutions with boundary and initial conditions	
Class 24	Particular solutions with boundary and initial conditions	
Week 9		
Class 25	Second order PDE and classifications to canonical (standard)-	
	parabolic, elliptic, hyperbolic solution by separation of variables	
Class 26	Second order PDE and classifications to canonical (standard)-	
	parabolic, elliptic, hyperbolic solution by separation of variables	
Class 27	Second order PDE and classifications to canonical (standard)-	
	parabolic, elliptic, hyperbolic solution by separation of variables	
Week 10		
Class 28	Application of OD and PDE in Eng study	
Class 29	Solving nonhomogeneous PDEs	
Class 30	Boundary conditions associated with the wave equation	
Week 11		Mid Term,
Class 31	The finite vibrating string (Standing waves)	Final Exam
Class 32	The vibrating beam (Fourth order PDE)	
Class 33	First order equations (Method of characteristics)	
Week 12		
Class 34	Systems of PDEs	
Class 35	General nature of boundary value problems	
Class 36	The Dirichlet problem for a circle and annulus	
Week13		
Class 37	Explicit finite difference method	\neg
Class 38	Monte Carlo methods	
Class 39	Monte Carlo Solutions of PDEs	CT 3,
Week 14		Final Exam
Class 40	Calculus of variations (Euler-Lagrange equations)	7
Class 41	Duhamel's Principle	

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2	C1, C2
Continuous	Assignment 1-3	20%	CO2	C3
Assessment	Class	5%	CO3	C3
(40%)	Participation	3 70		C3
	Mid term	15%	CO2, CO3	C3
Final Exam			CO1	C1, C2
		60%	CO2	C1, C2,C4
			CO3	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. An Introduction to Ordinary Differential Equations (Author: Earl A. Coddington)
- 2. A Textbook on Ordinary Differential Equations (Author: Antonio Ambrosetti, Shair Ahmad)
- 3. Partial Differential Equations for Scientists and Engineers (Author: Stanley J. Farlow)
- 4. Ordinary and Partial Differential Equations By Dr. M.D. Raisinghania , S. Chand Publishing

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: MATH 201 Credit Hours: 3.00
Course Title: Vector Analysis, Laplace Transform & Co-ordinate Geometry Contact Hours: 3.00

Level and Term: Level 2 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Purpose of this course is to introduce basic knowledge to identify and solve vector mathematical problems, to demonstrate practical applications of Laplace Transform and analyze co-ordinate geometry.

OBJECTIVES

- 1. To impart basic knowledge on the vector analysis, laplace transform and geometry.
- 2. To familiarize the students with straight lines, pair of straight lines, circles, conics in 2D and 3D co-ordinate systems.
- 3. To enable to find the length, volume and area of objects related to engineering study by using vector, application of Laplace transform to ordinary differential equations and also solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Compute** different engineering calculations based on Laplace transform, Vector analysis and Co-ordinate geometry.
- 2. **Comprehend** basic ideas of vector analysis, laplace transform and co-ordinate geometry.
- 3. **Prepare** necessary calculations based on vector analysis, laplace transform and co-ordinate geometry.
- 4. **Perform** real case studies calculations based on vector analysis, laplace transform and coordinate geometry.

COURSE CONTENTS

- 1. Vector Analysis: Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation, Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors, Gradient of scaler functions, Divergence and curl of point functions, physical significance of gradient, divergence and curl, Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and its application, Stoke's theorem and its application, Gauss theorem and its application in Engineering.
- 2. Laplace Transform: Definition of LT and Application of LT for Engineering, LT of some

elementary functions and properties of LT, Sufficient condition for existence of LT, Inverse LT, LT of derivatives, Unit step function, Periodic function, Some special theorems on LT, Partial fraction, Solution of DEs by LT, Heaviside expansion formula, Convolution theorem, Evaluation of improper integral, Application of LT.

3. Co-ordinate Geometry: Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties, circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves, equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points), Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid straight lines, standard equation of coincides, sphere and ellipsoid.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	o. COURSE OUTCOMES (COs)		PI	RO	GF	RAI	И (DU	TC	O	MES	(PO)	(PO)
No.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Know the physical explanation of different vector notation and Define Laplace transform, inverse Laplace transform, different types of matrices, and their properties.	√											
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	V											
CO3	Calculate length, volume and area of objects related to engineering study by using vector, Apply Laplace transform to ODE and PDEs and the knowledge of geometry in engineering study. Solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc.	√											

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	CP	CA	KP	Assessment Methods
CO1	Know the physical explanation of different vector notation and Define Laplace transform, inverse Laplace transform, different types of matrices, and their properties.	C1, C2	1		3	CT, F, ASG

CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	C3	1	3	CT, Mid Term Exam, F
CO3	Calculate length, volume and area of objects related to engineering study by using vector, Apply Laplace transform to ODE and PDEs and the knowledge of geometry in engineering study. Solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc.	C3	1	3	Mid Term Exam, F, ASG

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
	The knowledge of mathematics, science and engineering has to be applied to
CO1-PO1	describe the operation of being able to identify the physical explanation of
COI-POI	different vector notation, explain the complete concept about Laplace transform,
	2D and 3D geometry.
	To explain the differentiation and integration of a vector valued functions in
CO2-PO1	Cartesian, cylindrical and spherical geometry and to solve the problems of the pair
CO2-FO1	of straight lines, circles, system of circles, parabola, ellipse etc. the concept of
	mathematics and engineering Is required.
	In order to construct and calculate the area and volume of objects related to
CO3-PO1	engineering study by using vector, solve the differential equations by Laplace
	transform is needed the concept of mathematics, physics and engineering.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21

Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week	Contents	Assessment
Week 1		
Class 1	Definition of Vector and scalers & vector algebra, Scaler and vector	-
	products of two vectors and their geometrical interpretation	
Class 2	Definition of Vector and scalers & vector algebra, Scaler and vector	-
	products of two vectors and their geometrical interpretation	
Class 3	Definition of Vector and scalers & vector algebra, Scaler and vector	
	products of two vectors and their geometrical interpretation	CT 1,
Week 2		Final Exam
Class 4	Triple products and multiple products, Linear dependence and	
	independence of vectors, Differentiation of vectors	
Class 5	Gradient of scaler functions, Divergence and curl of point functions	
Class 6	Physical significance of gradient, divergence and curl	
Week 3		
Class 7	Definition of line, surface and volume integral, Integration of Vectors,	-
	Green's theorem and application	
Class 8	Definition of line, surface and volume integral, Integration of Vectors,	
	Green's theorem and application	
Class 9	Green's theorem and it's application	
Week 4		
Class 10	Gauss theorem and application in Engineering	
Class 11	Stoke's theorem and it's application.	
Class 12	Introduction to geometry for Engineering and Rectangular co-ordinates,	
	Transformation of co-ordinates	CT 2,
Week 5		Final Exam
Class 13	Introduction to geometry for Engineering and Rectangular co-ordinates,	,
	Transformation of co-ordinates, changes of axes, pair of straight lines,	
	general equation of second degree and reduction to its standard forms and	
	properties	
Class 14	Changes of axes, pair of straight lines, general equation of second degree	
	and reduction to its standard forms and properties	
Class 15	Changes of axes, pair of straight lines, general equation of second degree	,
	and reduction to its standard forms and properties	
Week 6		
Class 16	Circles (tangents, normal, chord of contact, pole and polar), Equation of	
	conics, homogeneous equations of second degree, angle between straight	
	lines, pair of lines joining the origin to the point of intersection of two	
	given curves	

C1 17		
Class 17	Circles (tangents, normal, chord of contact, pole and polar), Equation of	
	conics, homogeneous equations of second degree, angle between straight	
	lines, pair of lines joining the origin to the point of intersection of two	
	given curves	
Class 18	Circles (tangents, normal, chord of contact, pole and polar), Equation of	
	conics, homogeneous equations of second degree, angle between straight	
	lines, pair of lines joining the origin to the point of intersection of two	
	given curves	
Week 7		
Class 19	Circles (tangents, normal, chord of contact, pole and polar), Equation of	
	conics, homogeneous equations of second degree, angle between straight	
	lines, pair of lines joining the origin to the point of intersection of two	Mid Term,
	given curves	Final Exam
Class 20	Equations of parabola, ellipse in Cartesian and polar coordinates, system	
	of circles (radical axes, coaxial circles, limiting points	
Class 21	Equations of parabola, ellipse in Cartesian and polar coordinates, system	
	of circles (radical axes, coaxial circles, limiting points	
Week 8		
Class 22	Equations of parabola, ellipse in Cartesian and polar coordinates, system	
01435 22	of circles (radical axes, coaxial circles, limiting points	
Class 23	Equations of parabola, ellipse in Cartesian and polar coordinates, system	
C1033 23	of circles (radical axes, coaxial circles, limiting points	
Class 24	Equations of parabola, ellipse in Cartesian and polar coordinates, system	
C1855 24	of circles (radical axes, coaxial circles, limiting points	
Week 9	of cheres (radical axes, coaxial cheres, limiting points	
Class 25	Three dimensional co-ordinate system, direction cosines, projections, the	
Class 23	1	
	plane (angle between two planes, parallel & perpendicular plane, distance	
	of a point from a plane) and the straight line (coplanar lines, shortest	
	distance between two given straight lines), standard equation of sphere,	
C1 26	ellipsoid, hyperboloid	
Class 26	Three dimensional co-ordinate system, direction cosines, projections, the	
	plane (angle between two planes, parallel & perpendicular plane, distance	
	of a point from a plane) and the straight line (coplanar lines, shortest	
	distance between two given straight lines), standard equation of sphere,	
~	ellipsoid, hyperboloid	
Class 27	Three dimensional co-ordinate system, direction cosines, projections, the	
	plane (angle between two planes, parallel & perpendicular plane, distance	
	of a point from a plane) and the straight line (coplanar lines, shortest	
	distance between two given straight lines), standard equation of sphere,	
	ellipsoid, hyperboloid	
Week 10		
Class 28	Three dimensional co-ordinate system, direction cosines, projections, the	
	plane (angle between two planes, parallel & perpendicular plane, distance	Final Exam
	of a point from a plane) and the straight line (coplanar lines, shortest	
	distance between two given straight lines), standard equation of sphere,	
	ellipsoid, hyperboloid	
Class 29	Definition of LT and Application of LT for Engineering, LT of some	
	1	

	elementary functions and properties of LT	
Class 30	Definition of LT and Application of LT for Engineering, LT of some	
	elementary functions and properties of LT	
Week 11		
Class 31	Sufficient condition for existence of LT	
Class 32	LT of derivatives and it's application	
Class 33	LT of Integration with application, LT of sine and cosine integral	
Week 12		
Class 34	Unit step function and it's application	
Class 35	Periodic function with examples, LT of some special function.	
Class 36	Definition of inverse Laplace Transform and it's properties	
Week 13		
Class 37	Partial fraction and it's application in inverse Laplace Transform	
Class 38	Heaviside formula and it's application	
Class 39	Convolution theorem, Evaluation of improper integral, Application of LT	CT 3,
Week 14		Final Exam
Class 40	Solve ODE s by Laplace transform	
Class 41	Solve PDE s by Laplace transform	
Class 42	Application of LT in Eng study	

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2	C1, C2
Continuous	Assignment 1-3	2070	CO2	C3
Assessment (40%)	Class Participation	5%	CO3	C3
	Mid term	15%	CO2, CO3	C3
			CO1	C1, C2
Fina	al Exam	60%	CO2	C1, C2,C4
			CO3	C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Vector Analysis, 2nd Edition 2nd Edition by Murray Spiegel, Seymour Lipschutz, Dennis Spellman
- 2. Schaum's Outline of Laplace Transforms by Murray R. Spiegel.
- 3. Engineering Mathematics, Volume Two 2 II: Containing Coordinate Geometry of Two Dimensions, Co-ordinate Geometry of Three Dimensions, Matrices.
- 4. Theory of Equations and Vector Calculus by K. Kandasamy, P.; Thilagavathy, K.; Gunavathy
- 5. A Text Book on Co-ordinate Geometry with Vector Analysis Rahman & Bhattacharjee.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: MATH 219
Course Title: Statistics, Complex Variable and Fourier Analysis
Contact Hours: 3.00
Contact Hours: 3.00

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

To teach the students the concepts, principles and working field of Complex Variable, Statistics and Fourier analysis of different types of function. It is targeted to provide a basic foundation and applications of Fourier series, Fourier Integrals, orthogonal functions, and collection of numerical data systematically, complex analysis and observing data to give statistical assumption and probability. Finally, this course is designed to demonstrate practical applications of Complex Variable, Fourier analysis and Statistics and their methods of solution.

OBJECTIVE

- 1. To impart basic knowledge about Complex Variable, Statistics, Fourier analysis for different types of functions.
- 2. To familiarize the students with the characteristics of Complex Variable, Fourier series, Fourier Integrals and orthogonal functions.
- 3. To make proficient to familiarize with basic methods of statistics and their application.
- 4. To impart knowledge on Statistics, Complex Variable, Fourier analysis and thereby students able to solve engineering problems and to give physical interpretation.

COURSE OUTCOME

On successful completion of this course, students should be able to:

- 1. **Recall** the basic idea about Complex Variable and Statistics.
- 2. **Explain** the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.
- 3. **Apply** sampling theory and different tests in which giving concept about practical situation.
- 4. **Solve** complex engineering boundary value problems by Fourier analysis and probability distribution in engineering fields.

COURSE CONTENT

1. Complex Variable: Complex number system, General functions of a complex variable, Limits and continuity of a function of complex variable and related theorems, Differentiation and the Cauchy-Riemann equations, Mapping by elementary functions, Line integral of a complex function, Cauchy's Integral formula, Complex function, Convergence and Uniform convergence, Liouville's theorem, Taylor's and Laurent's theorem, Singular residues,

- Cauchy's residue theorem.
- **2. Fourier Analysis**: Real and Complex form of Fourier Series, Definition and expansion of a function of x in a Fourier Series, Physical application of Fourier Series, Finite Fourier Transform, Fourier Integral Inverse Fourier transform, Fourier transform and their uses in solving boundary value problems, Diffusion, wave, Laplace Equation.
- 3. Statistics: Measures of central tendency, Frequency distribution, Graphical representation of data including stem, Leaf and Box Plot, Chebyshev's theorem, z-scores, standard deviation, moments, skewness and kurtosis, elementary probability theory, discontinuous probability distribution, Continuous probability distribution, Binomial, Multinomial, Negative binomial, Poisson, Exponential, Elementary sampling theory, Estimation, Sets and probability, Random variable and its probability distribution, Treatment of grouped sampled data, Normal distribution, Tests of hypothesis, regression and correlation, Analysis of variance, Chi-square distributions, Conditional probability, Bayes's Theorem.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (COs)		PROGRAM OUTCOMES (PO)											
110.			2	3	4	5	6	7	8	9	10	11	12	
CO1	Recall the basic idea about Complex Variable and Statistics.	√												
CO2	Explain the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.	√												
CO3	Applysamplingtheoryanddifferenttestsinwhichgivingconceptaboutpractical situation.	√												
CO4	SolvecomplexengineeringboundaryvalueproblemsbyFourierAnalysisand probabilitydistribution in engineering fields.	√												

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Recall the basic idea about Complex Variable and Statistics.	C1	1		1	T, F
CO2	Explain the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.	C2	1		2	T, MT, F
CO3	Apply sampling theory and different tests in which giving concept about practical situation.	C3	1,3		2	T, MT, F
CO4	Solve complex engineering boundary value problems by Fourier Analysis and probability distribution in engineering	C3	1		5	ASG

	fields.								
(C1 – 1	(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;								
CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q									
– Quiz	- Quiz, ASG - Assignment, Pr - Presentation, R - Report, F - Final Exam, MT- Mid Term Exam)								

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Justifications								
CO1-PO1	The knowledge of mathematics has to be applied to Statistics and Complex								
	Variable in the field of engineering study.								
CO2-PO1	In order to explain the characteristics of various components of NAME, the								
	knowledge of mathematics regarding Complex Variable is needed								
CO3-PO1	In order to identify and describe statistical phenomena and probability								
	distribution, using the knowledge of mathematics and sciences is required.								
CO4-PO1	The concept of Mathematics and sciences is required to calculate Fourier integral								
	for various types of function and analysis probability distribution in engineering								
	study.								

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	30
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	120

Week 1	COMPLEX VARIABLE
Class-1	Complex number system
Class-2	General functions of a complex variable
Class-3	Limits and continuity of a function of complex variable and related
	theorems
Week 2	COMPLEX VARIABLE

	Differentiation and the Cauchy Riemann equations	CT-1				
Class-5	Mapping by elementary functions					
Class-6	Line integral of a complex function					
Week 3	ek 3 COMPLEX VARIABLE ss-7 Cauchy's Integral formula					
Class-7	Cauchy's Integral formula Complex function					
Class-8	Complex function					
Class-9	Convergence and Uniform convergence					
Week 4	COMPLEX VARIABLE					
Class-10	Liouville's theorem					
Class-11	Taylor's and Laurents theorem					
Class-12	Singular residues, Cauchy's residue theorem					
Week 5	FOURIER ANALYSIS					
Class-13	Real and Complex form of Fourier Series					
Class-14	Definition and expansion of a function of x in a Fourier Series					
Class-15	Physical application of Fourier Seires					
Week 6	FOURIER ANALYSIS	CT-2				
Class-16	Finite Fourier Transform					
Class-17	Infinite Fourier Transform					
Class-18	Fourier Integral					
Week 7	FOURIER ANALYSIS					
Class-19	Inverse Fourier transform					
Class-20	Fourier transform					
Class-21	Solving boundary value problems, Diffusion, wave, Laplace					
i	Equation.					
Week 8	STATISTICS					
Class-22	Measures of central tendency					
Class-22 Class-23	Measures of central tendency Frequency distribution, Graphical representation of data including	- - -				
Class-23	Frequency distribution, Graphical representation of data including stem					
	Frequency distribution, Graphical representation of data including					
Class-24 Week 9	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS					
Class-24 Week 9 Class-25	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores					
Class-24 Week 9 Class-25 Class-26	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments					
Class-24 Week 9 Class-25 Class-26 Class-27	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis	Mid				
Class-24 Week 9 Class-25 Class-26 Class-27 Week 10	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS					
Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory	Mid Term Exam				
Class-24 Week 9 Class-25 Class-26 Class-27 Week 10	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability	Term				
Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution	Term				
Class-23 Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution	Term				
Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS	Term				
Class-23 Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11 Class-31	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS Negative binomial, Poisson, Exponential distribution	Term				
Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11 Class-31 Class-32	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS Negative binomial, Poisson, Exponential distribution Uniform, Gamma distribution	Term				
Class-23 Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11 Class-31 Class-32 Class-32	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS Negative binomial, Poisson, Exponential distribution Uniform, Gamma distribution Elementary sampling theory, Estimation	Term				
Class-23 Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11 Class-31 Class-32 Class-33 Week 12	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS Negative binomial, Poisson, Exponential distribution Uniform, Gamma distribution Elementary sampling theory, Estimation STATISTICS	Term				
Class-23 Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11 Class-31 Class-32 Class-33 Week 12 Class-34	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS Negative binomial, Poisson, Exponential distribution Uniform, Gamma distribution Elementary sampling theory, Estimation STATISTICS Sets and probability, Random variable and its probability distribution	Term				
Class-23 Class-24 Week 9 Class-25 Class-26 Class-27 Week 10 Class-28 Class-29 Class-30 Week 11 Class-31 Class-32 Class-33 Week 12	Frequency distribution, Graphical representation of data including stem Leaf and Box Plot STATISTICS Chebyshev's theorem, z-scores Standard deviation, moments Skewness and kurtosis STATISTICS Elementary probability theory Discontinuous probability distribution, Continuous probability distribution Binomial, Multinomial distribution STATISTICS Negative binomial, Poisson, Exponential distribution Uniform, Gamma distribution Elementary sampling theory, Estimation STATISTICS	Term				

Week 13	STATISTICS	
Class-37	Tests of hypothesis	CT-4
Class-38	regression and correlation	
Class-39	Analysis of variance	
Week 14	STATISTICS	
Class-40	Chi-square distributions	
Class-41	Conditional probability, Bayes"s Theorem	
Class-42	Counting techniques	

Components		Grading	CO	Blooms Taxonomy				
	Class Test/	20%	CO1, CO2, CO3	C1, C2, C3				
Continuous	Assignment 1-3	2070	CO4	C3				
Assessment (40%)	Class Participation	5%	CO4	C3				
	Mid term	15%	CO2, CO3	C2,C3				
			CO 1, CO 2	C1,C2				
Fin	Final Exam		Final Exam		Final Exam		CO3	C3
			CO4	C3				
Tot	al Marks	100%						

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Complex Variables by Murray R. Spiegel, Schaum's Outline Series.
- 2. Theory and functions of complex variables, Shanti Narayan.
- 3. Fourier series, Schaum's outlines series, Murray R. Spiegel.
- 4. Statistics and probability Spiegel (Schaum Series).
- 5. Probability and it's Applications H. C. Saxena.

COMMUNICATIVE LANGUAGE COURSES

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: LANG 102 Credit Hours: 1.50
Course Title: Communicative English I Contact Hours: 3.00

Level and Term: Level 1 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course has mainly been designed to improve speaking and oral communication skills of the students. The course includes instructions and experience in speech preparation and speech delivery within various real life situations, formal and informal. Emphasis will be given on various speeches, such as informative, persuasive and interactive. This course will help students progress in real life both personally and professionally. Students will be able to understand class lectures and can comfortably continue the Engineering course, and also to compete in the global job market and increase career skills.

OBJECTIVES

- 1. To develop the four basics skills of English language, i.e. listening, speaking, reading and writing.
- 2. To develop students' interpersonal skills engaging them in various group interactions and activities
- 3. To improve students' pronunciation in order to improve their level of comprehensibility in both speaking and listening.
- 4. To give the students exposure to different types of texts in English in order to make them informed using different techniques of reading.
- 5. To gain an understanding of the underlying writing well-organized paragraphs and also to teach how to edit and revise their own as well as peer's writing.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Listen, understand**, and **learn** the techniques of note taking and answering questions
- 2. Understand and speak English quickly and smartly using the techniques learnt in the class.
- 3. **Communicate** effectively within the shortest possible time to present their ideas and opinions.
- 4. **Develop** competency in oral, written communication/presentation
- 5. **Understand** the techniques of academic reading and summarizing any book article/literature for review

COURSE CONTENTS

1. Speaking: Introduction to Language: Introducing basic skills of language, English for

Science and Technology, Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd, Name, family background, education, experience, any special quality/interest, likings/disliking, etc. Asking and answering questions, expressing likings and disliking; (food, fashion etc.) Asking and giving directions, Discussing everyday routines and habits, Making requests /offers /invitations/excuses /apologies/complaints, Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event, Practicing storytelling, Narrating personal experiences/Anecdotes, Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation)

- 2. Listening: Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions, Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will try to understand, Listening to short conversations between two persons/more than two.
- **3. Reading:** Reading techniques: scanning, skimming, predicting, inference; Reading Techniques: analysis, summarizing and interpretation of texts
- **4. Writing**: Introductory discussion on writing, prewriting, drafting; Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event; Paragraph writing, Compare-contrast and cause- effect paragraph

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES:

No.	COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO)											
140.			2	3	4	5	6	7	8	9	10	11	12	
CO1	Listen, understand and speak English quickly and smartly using the techniques learnt in the class.	V												
CO2	Understand the techniques of academic reading and academic writing	V												
CO3	Communicate effectively within the Shortest possible time to present ideas and opinions.										√			
CO4	Develop competency in oral, written communication/presentation										V			

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Listen, understand and speak English quickly and smartly using the techniques learnt in the class.	C1, C2				ASG
CO2	Understand the techniques of academic reading and academic writing	C2				ASG, Pr

	Communicate effectively within the	C2				Pr
CO3	shortest possible time to present ideas and					
	opinions.					
CO 4	Develop competency in oral, written	C3				Q, ASG, Pr
CO 4	communication/presentation					

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	14
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	75

Week	Class	Topic
Week 1	Class 1	Introduction to Language: Introducing basic skills of language. English for Science and Technology
	Class 2	Self-introduction and introducing others: How a speaker should introduce himself to any stranger/ unknown person/ a crowd. Name, family background, education, experience, any special quality/ interest, likings/ disliking etc.
	Class 3	Self-introduction and introducing others: How a speaker should introduce himself to any stranger/ unknown person/ a crowd. Name, family background, education, experience, any special quality/ interest, likings/ disliking etc.
	Class 4	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions
Week 2	Class 5	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions
	Class 6	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions

Week 3 Class 7 Discussing everyday routines and habits, Making requests /offers /invitations/excuses /apologies/complaints
Week 3 Class 8 Discussing everyday routines and habits, Making requests /offers /invitations/excuses /apologies/complaints Class 9 Class 9 Class 10 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 12 Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 4 Class 8 /invitations/excuses /apologies/complaints Class 9 Class 9 Class 10 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 11 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher —student conversation) Telephone conversations (role play in group or pair), Situational talks
Class 9 Class 9 Discussing everyday routines and habits, Making requests /offers /invitations/excuses /apologies/complaints Class 10 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 4 Class 10 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 4 Class 10 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks Class 16 Class 17 Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 4 Class 11 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 4 Class 11 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 4 Class 11 an outing to the cinema), Describing pictures / any incident / event Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks Class 16 / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Class 12 Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks Class 16 / dialogues: Practicing different professional conversation Telephone conversations (role play in group or pair), Situational talks Veek 6 Class 17 Class 17 Class 17 Telephone conversation (role play in group or pair), Situational talks Telephone conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Class 12 an outing to the cinema), Describing pictures / any incident / event
Week 5 Class 13 Practicing storytelling, Narrating personal experiences/Anecdotes Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks Class 16 Class 16 Class 16 Class 17 Telephone conversation, teacher –student conversation Telephone conversations (role play in group or pair), Situational talks Class 17 Telephone conversation (role play in group or pair), Situational talks Class 17 Telephone conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 5 Class 14 Practicing storytelling, Narrating personal experiences/Anecdotes Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks Class 16 / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks Veek 6 Class 17 Class 17 Telephone conversation, teacher –student conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Class 15 Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Class 16 Class 17 Class 16 Class 17 Class 18 Class 18 Class 18 Class 19 Cla
Class 16 / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Week 6 Class 17 / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 6 Class 17 doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 6 Class 17 Telephone conversations (role play in group or pair), Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Week 6 Class 17 / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
doctor-patient conversation, teacher –student conversation) Telephone conversations (role play in group or pair), Situational talks
Telephone conversations (role play in group or pair), Situational talks
doctor-patient conversation, teacher –student conversation)
Listening and understanding: Listening, note taking and answering
questions
Class 19 Students will listen to recorded text, note down important information
and later on will answer to some questions
Listening and understanding: Listening, note taking and answering
Week 7 Class 20 questions;
Students will listen to recorded text, note down important information
and later on will answer to some questions
Listening and understanding: Listening, note taking and answering
Class 21 questions;
Students will listen to recorded text, note down important information
and later on will answer to some questions
Difference between different accents: British and American accents;
Class 22 Documentaries from BBC and CNN will be shown and students will
try to understand
Week 8 Class 23 Documentaries from BBC and CNN will be shown and students will
try to understand
Difference between different accents: British and American accents;
Class 24 Documentaries from BBC and CNN will be shown and students will
try to understand
Class 25 Listening to short conversations between two persons/more than two
Week 9 Class 26 Listening to short conversations between two persons/more than two
Class 27 Listening to short conversations between two persons/more than two
Class 28 Reading techniques: scanning, skimming, predicting, inference
Week 10 Class 29 Reading techniques: scanning, skimming, predicting, inference
Class 30 Reading techniques: scanning, skimming, predicting, inference
Class 31 Reading techniques: analysis, summarizing and interpretation of texts
Week 11 Class 32 Reading techniques: analysis, summarizing and interpretation of texts
Teach 11 Cases 32 Teaching teeningues, analysis, summarizing and interpretation of texts

	Class 34	Introductory discussion on writing, prewriting & drafting									
Week 12	Class 35	Introductory discussion on writing, prewriting & drafting									
	Class 36	ntroductory discussion on writing, prewriting & drafting									
	Class 37	Topic sentence, paragraph development, paragraph structure,									
	Class 37	describing a person/scene/picture, narrating an event									
Week 13	Class 38 Class 39	Topic sentence, paragraph development, paragraph structure,									
WEEK 13		describing a person/scene/picture, narrating an event									
		Topic sentence, paragraph development, paragraph structure,									
		describing a person/scene/picture, narrating an event									
	Class 40	Paragraph writing, compare contrast and cause-effect paragraph									
Week 14	Class 41	Paragraph writing, compare contrast and cause-effect paragraph									
	Class 42	Paragraph writing, compare contrast and cause-effect paragraph									

Assessment Crite	eria	CO	Blooms Taxonomy
Components	Grading		
Assignment I	20%	CO1, CO2	C1, C2, C3
Assignment II	50%	CO1, CO2	C1, C2, C3
Continuous Assessment	30%	CO3, CO4	C1, C2, C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication
- 2. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 3. Jones, L.(1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 4. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation)
- 5. From Paragraph to Essay Maurice Imhoof and Herman Hudson
- 6. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 7. Speak like Churchill stand like Lincoln James C. Humes
- 8. Cambridge IELTS Practice Book
- 9. Selected Sample Reports and Selected Research Articles

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: LANG 202 Credit Hours: 1.50
Course Title: Communicative English II Contact Hours: 3.00

Level and Term: Level 2 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes especially in reading and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to different types of texts to develop efficient reading skill. Reading will also involve activities and discussions leading to effective writing. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Emphasis is particularly put on the various forms of essay writing such as descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, students are expected to be able to communicate at various situations, participate in group activities and prepare formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. In addition, the course emphasizes on providing constructive feedback on students' oral performances.

OBJECTIVES

- 1. To develop English language skills to communicate effectively and professionally.
- 2. To strengthen students' presentation skills.
- 3. To develop competency in academic reading and writing.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. Understand the techniques of academic reading and become familiar with technical terms
- Develop competency in academic reading, preparing report written communication/presentation
- 3. **Analyze** any problem critically, interpret data and synthesize information to provide valid conclusions
- 4. **Communicate effectively** within the shortest possible time to present their reports and academic writings
- 5. **Apply** the techniques to find out the main points of any long article within a very limited time as well as know the techniques of any effective writing. In short, with consistent practice they will be able to overcome the language barrier.

COURSE CONTENTS

- **1. Reading:** Reading comprehension: Practice using different techniques; Academic reading: comprehension from department or subject related passages; Vocabulary for engineers (some common engineering terms for both general and department specific); Reading subject specific text to develop vocabulary
- 2. Writing: Writing semi-formal, formal/official letters, official Email; Applying for a job: writing cover letter and curriculum vitae; Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading; Narrative and descriptive writing: comparison-contrast and cause-effect, argumentative and opinion expression, assignment writing; Analyzing and describing graphs or charts; Practicing analytical and argumentative writing.
- **3. Speaking**: Public speaking: Basic elements and qualities of a good public speaker; Set speech and extempore speech: how to get ready for any speech set or extempore; Individual/Group presentation: how to be ready for presentation, prepare script for good speech, preparing power point slides etc., selected books/selected stories for presentation.
- **4. Listening:** Listening to long lecture on some topics; Listening and understanding speeches/lectures of different accent.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOMES (COs)		PI	RO	GR	RAI	И (DU	TC	OI	MES	(PO))
140.	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	Understand the techniques of academic	,											
CO1	reading and become acquainted with												
technical vocabularies													
	Understand the techniques of effective												
CO2	academic writing such as research article/												
	report writing												
	Communicate effectively within the shortest												
CO3	possible time to present any report and										$\sqrt{}$		
research work													
	Analyze any problem critically, analyse and												
CO4	interpret data and synthesize information to										$\sqrt{}$		
	provide valid conclusions												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understandthetechniquesofacademicreadingandbecomeacquainted with technical vocabularies	C2				ASG
CO2	Understand the techniques of effective academic writing such as research article/ report writing	C2				ASG, Pr
CO3	Communicate effectively within the	C3				Pr

	shortest possible time to present any			
	report and research work			
GO 4	Analyze any problem critically, analyze and interpret data and	C4		O ACC D
CO 4	synthesize information to provide valid conclusions	C4		Q, ASG, Pr

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	14
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	75

Week	Class	Торіс
	Class 1	Reading comprehension: Practice using different techniques
Week 1	Class 2	Reading comprehension: Practice using different techniques
	Class 3	Reading comprehension: Practice using different techniques
	Class 4	Academic reading: comprehension from department or subject related passages
Week 2	Class 5	Academic reading: comprehension from department or subject related passages
	Class 6	Academic reading: comprehension from department or subject related passages
Class		Vocabulary for engineers (some common engineering terms for both general and department specific) Reading subject specific text to develop vocabulary
Week 3	Class 8	Vocabulary for engineers (some common engineering terms for both general and department specific) Reading subject specific text to develop vocabulary

		Vocabulary for engineers (some common engineering terms for both							
	Class 9	general and department specific)							
	Class 9	Reading subject specific text to develop vocabulary							
	Class 10	Writing semi-formal, formal/official letters, official Email							
Week 4	Class 10	·							
week 4		Writing semi-formal/official letters, official Email							
	Class 12	Writing semi-formal, formal/official letters, official Email							
XX 1.7	Class 13	Applying for a job: writing cover letter and curriculum vitae							
Week 5	Class 14	Applying for a job: writing cover letter and curriculum vitae							
	Class 15	Applying for a job: writing cover letter and curriculum vitae							
	Class 16	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading							
Week 6	Class 17	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading							
	Class 18	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading							
	Class 19	Narrative and descriptive writing: comparison-contrast and cause-effect, argumentative and opinion expression, assignment writing							
Week 7	Class 20	Narrative and descriptive writing: comparison-contrast and cause-effect, argumentative and opinion expression, assignment writing							
	Class 21	Narrative and descriptive writing: comparison-contrast and cause-effect, argumentative and opinion expression, assignment writing							
	Class 22	Analyzing and describing graphs or charts							
Week 8	Class 23	Analyzing and describing graphs or charts							
	Class 24	Analyzing and describing graphs or charts							
	Class 25	Practicing analytical and argumentative writing.							
Week 9	Class 26	Practicing analytical and argumentative writing.							
VV CCR >	Class 27	Practicing analytical and argumentative writing.							
	Class 28	Public speaking: Basic elements and qualities of a good public speaker							
Week	Class 29	Public speaking: Basic elements and qualities of a good public speaker Public speaking: Basic elements and qualities of a good public speaker							
10	Class 30	Public speaking: Basic elements and qualities of a good public speaker							
	Class 31	Set speech and extempore speech: how to get ready for any speech – set							
	Class 51	or extempore							
Week	Class 32	Set speech and extempore speech: how to get ready for any speech – set							
11	Class 32	or extempore							
11	Class 33	Set speech and extempore speech: how to get ready for any speech – set							
	Clubb 33	or extempore							
		Individual/Group presentation: how to be ready for presentation, prepare							
	Class 34	script for good speech, preparing power point slides etc., selected books/selected stories for presentation.							
		Individual/Group presentation: how to be ready for presentation, prepare							
Week	Class 35	script for good speech, preparing power point slides etc., selected							
12	Class 33	books/selected stories for presentation.							
		Individual/Group presentation: how to be ready for presentation, prepare							
	Class 36	script for good speech, preparing power point slides etc., selected							
	Class 50	books/selected stories for presentation.							
	Class 37	Listening to long lecture on some topics							
Week	Class 37	Listening to long lecture on some topics Listening to long lecture on some topics							
13	Class 39	Listening to long lecture on some topics Listening to long lecture on some topics							
	Class 39	Listening to long lecture on some topics Listening and understanding speeches/lectures of different accent							
West		Listening and understanding speeches/lectures of different accent							
Week 14	Class 41								
	Class 42	Listening and understanding speeches/lectures of different accent							

Assessment Crite	eria	CO	Blooms Taxonomy
Components	Grading		
Assignment I	20%	CO1, CO2	C1, C2, C3
Assignment II	50%	CO1, CO2	C1, C2, C3
Continuous Assessment	30%	CO3, CO4	C1, C2, C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

- 1. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 2. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation)
- 3. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication
- 4. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 5. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 6. Speak like Churchill stand like Lincoln James C. Humes
- 7. Cambridge IELTS Practice Book
- 8. Selected Sample Reports and Selected Research Articles

GENERAL EDUCATION COURSES

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GEBS 101 Credit Hours: 2.00
Course Title: Bangladesh Studies Contact Hours: 2.00

Level and Term: Level 1Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course has been designed for undergraduate engineering students to help them learn the rich history of Bangladesh and to provide them with basic knowledge of historical events which eventually led to the formation of Bangladesh and constitution of Bangladesh, current trends in economic development and thereby to enhance their understanding of present phenomena in the light of history which will make them responsible citizen.

OBJECTIVES

- 1. To equip students with factual knowledge that will enable them to learn history of Bangladesh.
- 2. To trace the historical roots of Bangladesh as an independent state focusing on the social, cultural and economic developments that have taken place since its independence.
- 3. To promote an understanding of the development of Bangladesh and its culture.
- 4. To create an awareness among the students about the History, Geography, Economics, Politics and Culture of Bangladesh.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Identify** specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyze plurality of cultural identities of Bangladesh.
- 2. **Explain** the economy and patterns of economic changes through qualitative and quantitative analysis.

COURSE CONTENTS

- 1. **Bangladesh Geography:** Location, Area, Boundary, Physiography, River system, Forest and Climate, Demography of Bangladesh, Maritime zones.
- 2. <u>History:</u> Overview of the ancient Bengal; anthropological identity of the Bengali race; main trends in the history of medieval Bengal; Bengal under the East India Company; religious and social reform movements; nationalist movements, division of the Indian sub-continent; language movement 1948-1952; education movement of 1962; six-point movement of 1966; mass uprising of 1969; war of independence and emergence of Bangladesh in 1971,

- Constitution of Bangladesh, Political Development and Democratic Transition (1971-1990), Political Development (1991- Present), Bangladesh's contribution to world peace and its Security.
- 3. Environment, Economy and Culture: Land, Characteristics of tropical monsoon climate, Forests and biomass, Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of Bangladesh, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh, Art and Literature, Main traditional cultural events, Vision-2021, Digitalization, Tourism and Natural Resources, Bangladesh and International Relations.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	Course Outcomes (CO) of the Course	Program Outcome											
110	Course Outcomes (CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
CO-1	Identify specific stages of Bangladesh's political												
	history, through the ancient, medieval, colonial and												
	post-colonial periods and critically analyze plurality												
	of cultural identities of Bangladesh.												
CO-2	Explain the economy and patterns of economic												
	changes through qualitative and quantitative												
	analysis.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO-1	Identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyze plurality of cultural identities of Bangladesh.	C1			7	CT, MT, F
СО-2	Explain the economy and patterns of economic changes through qualitative and quantitative analysis.	С3			7	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Teaching Strategies	Lecture, Tutorial, Assignments
Learning Strategies	Face to face, Guided learning, Independent learning, Assignments
Assessment	Class Test, Mid-Term Exam, Assignments, Final examination
Strategies	

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning Time (SLT)	
Face to Face	Lecture (2 hours/week x 14 weeks)	28	
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10	
Independent	Individual learning (1-hour lecture ≈ 1	24	
Learning	hour learning)		
	Preparation for tests and examination	13	
Assessment	Pop Quiz/Class Test/Mid-Term Exam	2	
	Final examination	3	
	TOTAL SLT		
	CREDIT = SLT/40	2	

Week-1	Topic	CT
	Introductory class: Brief discussion on the total syllabus, basic	
Class-1	requirements of the course, methods of assessment of the course	
	Bangladesh Geography: Location, Area, Boundary, Physiography,	
Class-2	River System, Forest and Climate, Demography of Bangladesh.	
Week-2		
	Overview of the ancient Bengal; anthropological identity of the	
Class-3	Class-3 Bengali race; main trends in the history of medieval Bengal	
Class-4	Bengal under the East India Company;	CT-1
Week-3		
Class-5	Religious and Social reform movements	
Class-6	Nationalist movements, division of the Indian sub- continent	
Week-4		
Class-7	Language movement 1948-1952, Education movement of 1962	
Class-8	Language movement 1948-1952, Education movement of 1962	Mid exam
Week-5		
Class-9	Six-point movement of 1966; Mass uprising of 1969;	
Class-10	War of Independence and Emergence of Bangladesh in 1971	
Week-6		
Class-11	Constitution of Bangladesh, Political Development and Democratic Transition (1971-1990)	
Class-12	Constitution of Bangladesh, Political Development and Democratic Transition (1971-1990)	
Week-7		
Class-13	Political Development (1991- Present), Bangladesh's contribution to world peace and security.	
Class-14	Political Development (1991- Present), Bangladesh's contribution to world peace and security.	
Week-8		
Class-15	Land, Characteristics of tropical Monsoon climate,	
Class-16	Forests and biomass, Fish	

Week-9		1
Class-17	Minerals, Health and Education,	
Class-18	Agriculture, Industries	
Week-10		
Class-19	NGOs, Population, Sociological and Cultural aspects of Bangladesh	
Class-20	Economy and national development,	
Week-11		
Class-21	Development and Progress of the Millennium Development Goals (MDGs)	CT-2
Class-22	Public Administration in Bangladesh, State of Good Governance in Bangladesh	
Week-12		
Class-23	Art and Literature	
Class-24	Traditional cultural events	
Week-13		
Class-25	Vision-2021, Digitalization	
Class-26	Tourism and Natural Resources	CT-3
Week-14		
Class-27	Bangladesh and International Relations	
Class-28	Revision of the course	

COs	Assessment Method	(100%)	Remarks
	Class Assessment	•	
1	Class test (CT)	20%	
1	Class performance	5%	Assignment, quiz etc
	Exam		
1 & 2	Mid Term	15%	
1 & 2	Final	60%	

- 1. Bangladesh Studies: Md. Shamsul Kabir Khan and Daulatunnahar Khanam
- 2. The Constitution of the People's Republic of Bangladesh
- 3. **Discovery of Bangladesh**: Akbar Ali Khan
- 4. **History of Bangladesh, Vols, 1-3**: Sirajul Islam
- 5. **History of Modern Bengal, Vol, 1**: R C Majumdar
- 6. **Dynastic History of Bengal**: Dr. Abdul Mumin Chowdhury
- 7. A History of Bangladesh: William Van Schendel
- 8. **A History of Sufism in Bengal**: Dr. Enamul Huq
- 9. **Geography of Bangladesh**: Harun Er Rashid
- 10. Banglapedia: National Encyclopedia of Bangladesh, Vols, 1-10: Sirajul Islam
- 11. History of Bengal: (Mughal Period 1526-1765): R. A. Chandra
- 12. Land of Two Rivers: Nitesh Sengupta

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GELM 275 Credit Hours: 2.00
Course Title: Leadership and Management Contact Hours: 2.00

Level and Term: Level 2 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The course is designed to make students understand the overlapping connection between engineering and management in an organization through the study of varied management practices and leadership traits as an engineer.

OBJECTIVES

- 1. To introduce different management functions and approaches.
- 2. To expose students to different views and styles of leadership
- 3. To understand how an organization functions collaboratively with managers and engineers.
- 4. To understand various personality traits and its impact on leadership and management.
- 5. To solve real-world management problems as an engineer.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** with the fundamental concepts of leadership and management skills.
- 2. **Understand** the role and contribution of a leader in achieving organizational goals.
- 3. **Understand** the contribution of leadership traits and management skills in decision making and solving real life problems

COURSE CONTENTS

- 1. **Leadership:** Leadership styles, leadership theories, traits of a good leader, conflicts negotiation, engineer as a leader, manpower control, motivation and theories, group dynamics and participative management.
- 2. **Planning and Control:** Management functions, types, roles and responsibilities, management skills, management approaches, organization.
- 3. **Planning and Development:** Organizational planning, organizational development models, research process and diagnostic methods.
- 4. **Personnel planning and HR Management System:** Process of Human Resource Planning, performance management and appraisal.
- 5. **Cost and Financial Management:** Elements of costs of products, break-even analysis, investment analysis, net present value, payback period and benefit-cost ratio.
- 6. **Marketing Management:** Marketing concepts & organization, industrial and consumer selling, channel & advertising decisions and new product strategy.

- 7. **Operation management:** Project scheduling, demand and supply forecasting, inventory control and quality management.
- 8. **Information Technology and Management:** Management information system (MIS), enterprise resource planning (ERP).
- 9. Case Studies: Solving real-world management problems.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	No COURSE OUTCOMES (COs)		PROGRAM OUTCOME (POs)										s)
110			2	3	4	5	6	7	8	9	10	11	12
CO-1	Explain with the fundamental concepts of leadership									٦/			
CO-1	and management skills									٧			
CO-2	Understand the role and contribution of a leader in									1			
CO-2	achieving organizational goals									٧			
	Understand the contribution of leadership traits and												
CO-3	management skills in decision making and solving												
	real life problems												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain with the fundamental concepts of leadership and management skills	C3			1	T, R, F
CO2	Understand the role and contribution of a leader in achieving organizational goals	C2			1	T, ASG, R, F
CO3	Understand the contribution of leadership traits and management skills in decision making and solving real life problems	C2			1	T, ASG, R,

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Lectures, class performances, assignments, class tests, final exam

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning Time (SLT)
Face to Face	Lecture (2 hours/week x 14 weeks)	28
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent	Individual learning (1-hour lecture ≈ 1-	24
Learning	hour learning) Preparation for tests and examination	13
Assessment	Pop Quiz/Class Test/Mid-Term Exam	2

Final examination	3
TOTAL SLT	80
CREDIT = SLT/40	2

COURSE SCHEDULE

Week	Lecture	Topics	TEST
1	Lec 1	Introduction to Leadership and Management: Definition	
		of leadership and management; basic difference between a	
		leader and a manager; relation of leaders and managers with	
		respect to efficiency and effectiveness; qualities of leader and	
		managers with examples from history.	
	Lec 2	Management Fundamentals: Definition of management &	
		manager; levels of management; management functions and	
		skills; Mintzberg's managerial roles; Henri Fayol's	
		management principles; strategic management.	
2	Lec 3	Leadership & Motivation: Motivation, Maslow's hierarchy	
	Lec 4	needs; theory of X & Y; motivators and hygiene factors; goal	
		setting theory; reinforcement theory; equity theory;	
		expectancy theory	
3	Lec 5	Leadership: Leadership styles; leadership trait theory;	
	Lec 6	managerial grid; contemporary leadership; conflicts	Class Test 1
		negotiation; leadership issues in 21st century; cross cultural	
		leadership; engineer as a leader and some simple case	
		discussions on leadership (positive and toxic leadership) in the	
		class (Interactive Learning).	
4	Lec 7	Case Study – I : Engineer as Great Leaders	
	Lec 8		
5	Lec 9	Organizational Management:	
		Organization; departmentalization; chain of command; unity	
		of command; cross functional area; authority; centralization	
		and decentralization; traditional & contemporary	
		organization; matrix project structure; learning structure;	
	T 10	organizing collaboration.	
	Lec 10	Planning and goal setting: Foundation of planning; goals of	
		plan; types of goal; types of goal & plan; goal setting; MBO;	
	T a a 1.1	well written goal.	
6	Lec 11	Control: Controlling process; controlling for organizational performance; types of control: (feed-forward, feedback &	
		concurrent); balanced scorecard; contemporary issues in	
		control; workplace concern & workplace violence.	
	Lec 12	Change and Innovation: Change and innovation; internal	
	Let 12	and external for change; changing process; creativity vs	
		innovation.	
7	Lec 13	Case Study – II : Planning and Goal Setting; A Managerial	
_ ′		Approach: Engineer as Great Managers	
		(Interactive Discussions in the Class)	
L		(Interactive Discussions III the Class)	

	Lec 14	Attitude: Components of Attitude; behavior model and	
		characteristics model; behavior vs. attitude; job attitude; job	
		involvement; job satisfaction and customer satisfaction.	
8	Lec 15	Personality: Personality determinants: heredity and	
		environment; Myers-Briggs Type Indicator; Big five	
		personality model; personality traits (core self-evaluation,	
		Machiavellianism, narcissism, self-monitoring, risk taking,	
		proactive personality).	
	Lec 16	Perception and Individual Decision Making: Factors	
		influencing perception; attribution theory; errors/biases in	
		attribution	
9	Lec 17	Perception and Individual Decision Making: Factors of	3 AT 1 TE /
		individual decision making; rational decision making;	Mid Term /
		bounded rationality; satisfice; common errors in decision	Project
		making; creativity in decision making.	
	Lec 18	Case Study – III: A Case on Decision Making – Involves	
		both leadership and managerial skills (Interactive Discussion	
		in the Class)	
10	Lec 19	Understanding Work Team: Work group; work team;	
		problem solving team; self-managed work team; cross	
		functional team; virtual team; team effectiveness; team	
		challenges.	
	Lec 20	HR Management: Process of Human Resource Planning;	Class Test 2
		forecasting demand for labor; staffing.	
11	Lec 21	HR Management: Internal supply of labor; performance	
		appraisal.	
	Lec 22	Operations Management: Project managing basics; goals	
		and boundary of project; WBS; scheduling a project.	
12	Lec 23	Operations Management: Demand and supply forecasting;	
		inventory control.	
	Lec 24	Exercise – Use of Microsoft Project (MSP) for scheduling	
		a project at student level	
13	Lec 25	Case Study – IV: A case that covers all relevant theories	
		taught throughout the course and involves both leadership	
		and management issues, e.g., Columbia's Final Mission.	
		(This may be given as group assignment followed by in class	
		short presentations/discussions)	
	Lec 26		
14	Lec 27	Information Technology and Management: Management	
		Information System (MIS); Enterprise Resource Planning	
		(ERP) - For introductory knowledge.	
	Lec 28	Revision	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Assessment str	rategies	CO	Bloom's Taxonomy
Components	Grading		Bloom's Taxonomy

	Class test	20%	CO 1	C1-C2, P1
	1-2		CO 2	C1-C2
Continuous	Class		CO 1	C1-C2, P1, A1
Assessment	Participation	5%	CO 2	C1-2, P1-P2, A1
(40%)			CO 1	C1-C2, P1, A1
	Mid term	15%	CO 2	C1-C2, P1-P2, A1-A2
			CO 3	C1-C2, P1-P2, A1-A2
			CO 1	C1-C2, P1, A1
	Final Exam	60%	CO 2	C1-C2, P1-P2, A1-A2
			CO 3	C1-C2, P1-P2, A1-A2
7	Γotal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Students must be provided with SOLID reading material instead of referring text books. However, course teacher may select any text book as per his choice.
- 2. Engineering Management (Revised Edition) A.K. Gupta
- 3. Industrial Engineering and Production Management Martand T. Telsang
- 4. Leadership in Organizations Gary Yukl
- 5. Developing Management Skills David A. Whetten and Kim S. Camero

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GEE 303 Credit Hours: 2.00
Course Title: Fundamentals of Economics Contact Hours: 2.00

Level and Term: Level 3 Term I

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is designed to present engineering students the major concepts and techniques of engineering economic analysis that are needed in the decision making process. This course provides an introduction to a broad range of economic concepts, theories and analytical techniques. The emphasis of this course is on the analytical analysis of money and its impact on decision making. The use of a market, supply and demand, model will be the fundamental model in which trade-offs and choices will be considered through comparison of costs and benefits of actions. The role of government policy to address microeconomic market failures and macroeconomic objectives will be examined.

OBJECTIVES

- 1. To enable students to demonstrate their knowledge of the fundamental and technical concepts of economics.
- 2. To work effectively in the organizations with honesty and integrity.
- 3. To impart knowledge to understand consumer behavior, elasticity and different market structure.
- 4. To enable identify the determinants of various macroeconomic aggregates such as national income, full employment, unemployment, consumption and savings function, inflation, productivity and the major challenges associated with the measurement of these aggregates.
- 5. To enable to apply the basic theories of economics in critical thinking and problem solving.
- 6. To make able to identify the basic features of economic development and regarding planning for the economy of the country.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Understand** the basic concepts and principles of Micro and Macro Economics.
- 2. **Identify and apply** the indifference curve theory and market equilibrium in real life situation
- 3. **Explain** time-value of money concept and **apply** the knowledge of inflation, investment and cost benefit analysis
- 4. **Understand** the Economic Development and Planning for the country. To get idea of international economy.

COURSE CONTENTS

Broad Topic	Details Topic
Fundamental of Economics	Definition
Production Possibility Frontier and	1. PPF Curve.
Engineering Decision	2. Applying the PPF to Society's Choices by the
	Engineers.
Utility Theory	Law of diminishing marginal utility.
	1. Definition. 2. Law of Demand. 3. Market
Demand	Demand. 4. Reason for demand curve downward
	slopping. Mathematical Analysis
Supply	1. Definition. 2. Supply curve. 3. Market Equilibrium.
	1. Different types of elasticity.
Elasticity of Demand	2. Different types of price elasticity.
	3. Relation between AR, MR and elasticity
	4. Mathematical Analysis
Indifference Curve Analysis and	Budget Line, MRS, Consumer Choice
Consumers Equilibrium	
Production Function from Engineering	1. TP, AP, MP. 2. Law of Variable proportion. 3. Law
point of view	of returns
Cost Analysis and Engineering Economics	1. TC, AC, MC. 2. Short run cost analysis
Analysis of Market Structure and	1. Perfectly Competitive Market
Engineering Decision	2. Monopoly and Monopolistic Market
Key concept of	Definition
Macroeconomics	
National Income	GDP, GNP, NNP, NI
Circular Flow of National Income and	Two, Three and Four sector Economy
Engineering Resources	
Broad Topic	Details Topic
Savings	Savings Function, APS, MPS.
	Derive the savings function from consumption
	functions; Mathematically and Graphically.
Consumptions	Consumption functions, APC, MPC
Investment	Investment Theories, Investment Multiplier
Engineering Plan considering the Inflation	
Ž	Demand-Pull and Cost-Push Inflation
	Impact and Use
Engineering Plan	
The Effect of Fiscal Policy on Engineering	Impact and Use
Plan	
Theories of Developments	1 or 2 Theories of Economic Development.
Economic Problems in Developing	
Countries especially in Bangladesh.	

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOMES (COs)		PROGRAM OUTCOME								E		
110	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
CO-1	Understand the basic concepts and principles of	V											
CO-1	Micro and Macro Economics	V											
CO-2	Identify and apply the indifference curve theory												
CO-2	and market equilibrium in real life situation												
	Explain time-value of money concept and apply												
CO-3	the knowledge of inflation, investment and cost												
	benefit analysis												
	Understand the Economic Development and												
CO-4	D-4 Planning for the country. To get idea of												
	international economy.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO-1	Understand the basic concepts and principles of Micro and Macro Economics	C2			1-4	CT, F
CO-2	Identify and apply the indifference curve theory and market equilibrium in real life situation	C3			1-4	CT, F
CO-3	Explain time-value of money concept and apply the knowledge of inflation, investment and cost benefit analysis	C2			1-4	CT, F MT
CO-4	Understand the Economic Development and Planning for the country. To get idea of international economy.	C4			1-4	CT, F MT

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Lectures, class performances, assignments, class tests, final exam

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning Time (SLT)
Face to Face	Lecture (2 hours/week x 14 weeks)	28
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10

Independent	Individual learning (1-hour lecture \approx 1-	24				
Learning	hour learning)	13				
	Preparation for tests and examination					
Assessment	Pop Quiz/Class Test/Mid-Term Exam	2				
	Final examination	3				
	TOTAL SLT					
	CREDIT = SLT/40					

COURSE SCHEDULE

Weeks	Lectures	Lecture/Tutorial/Assignment Topic	References/Teaching Materials/Equipment
		Introduction to Engineering Economics	Lecture notes,
	1	Importance of Economics in Engineering.	Reference texts/ video
		Definition of economics, Difference between micro	clips/etc.
1 2		and macroeconomics. Production possibility frontier	
		(PPF) and Engineering choice.	
	3	Demand and determinants of Demand	
2	4	Demand curve related basic idea and Mathematical	
		Application	
	5	Supply and Determinants. Market	
3		Mechanism.	
	6	Consumer Choice (Indifference Curve and Budget	
		Line)	
	7	Indifference Curve, Properties of IC, MRS	
4	8	Theory of production in the point of view of	
		Engineers	
	9	Theory of cost, Short run and long run cost curve	
5	10	Firms Equilibrium (Concepts)	
	11	Different types of Market.	
6	12	How the Engineers will act in perfectly	
		competitive market.	
	13	How the Engineers will act in Monopoly Market	
7	14	National Income analysis	
	15	Aggregate Demand and Aggregate Supply	
8	16	Determination of Level of Income and	
		Employment	
9	17	Keynes Full Employment. Theory	
		Circular flow of Income and Expenditure (How	
	18	engineers will utilize the resources and decision-	
		making process of project plan)	
10	19	Consumption Function	
	20	Saving Function	
11	21	Inflation, Type of Inflation	_
	22 Impact of Inflation		
12	*		
	24 Cost benefit analysis		
13	13 25 Theories of Economic Development		
	26	Economic Problems in Developing Countries	
14	27	Contribution of the Engineers in the Economic	
		Development of Bangladesh.	

28	How the Engineers compare their development projects	
	in the context of World Economy.	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/		CO1	C1, C2
Continuous	Assignment 1-3	20%	CO2	C1,C2
Assessment	Assignment 1-3		CO3	C3, C4
(40%)	Class Participation	5%	CO4	
	Mid term	15%	CO2, CO3	C1, C2, C4
Fine	al Exam	60%	CO1, CO2	C1, C2, , C4
17116	II Exam	0070	CO3, CO4	C1, C2,C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Economics by P. A. Samuelson and W. D. Nordhaus (7th Edition)
- 2. Microeconomics by Robert S. Pindyck and Daniel L. Rubinfeld (8th Edition)
- 3. Macroeconomics by N. Gregory Mankiw (8th Edition)
- 4. Principle of Economics by N. Gregory Mankiw (8th Edition)
- 5. Engineering Economics by Niall M. Fraser and Elizabeth M. Jewkes. (5th Edition)

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GES 305 Credit Hours: 2.00
Course Title: Fundamentals of Sociology Contact Hours: 2.00

Level and Term: Level 3 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course has been designed to understand the human inter-personal relationship and human psychology in the society and to apply this knowledge in the practical field as an engineer through the study of varied societies and cultures.

OBJECTIVES

- 1. To learn basics, scopes and perspectives of sociology.
- 2. To understand societal and cultural issues in national, global and environmental context.
- 3. To synthesis between social problem and social satisfaction in real life.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. Understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies.
- 2. Apply contextual knowledge to assess societal and cultural issues in national and global context and also environmental context for sustainable development.
- 3. Analyze social problem, social stratifications, socialism, capitalism and economic life and political issues.

COURSE CONTENTS

- 1. Nature and scope sociological imagination, perspectives of sociology.
- 2. Stages of social research and research method.
- 3. Culture and civilization, socialization and self –development
- 4. Globalization and social changes, media and individual
- 5. Social organizations and social problems, social stratification;
- 6. Industrial revolution, capitalism and socialism,
- 7. Work and economic life
- 8. Environment and human activities, climate change and global risk
- 9. Population and human society, urbanization and city development, social changes and technology

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOME (CO.)	PROGRAM OUTCOMES (PO))		
No.	COURSE OUTCOME (COs)	1	2	3	4	5	6	7	8	9	10	11	12

CO1	Understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies.				\checkmark	
CO2	Apply contextual knowledge to assess societal and cultural issues in national and global context and also environmental context for sustainable development.		V			
CO3	Analyze Social problem, social stratifications, socialism, capitalism and economic life and political issues.		V			

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies.	C1		-	1	T, ASG, F
CO2	Apply contextual knowledge to assess societal and cultural issues in national and global context and also environmental context for sustainable development.	C2		-	1	Q, F
CO3	Analyze social problem, social stratifications, socialism, capitalism and economic life and political issues.	C2			2	MT, F

⁽C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Justifications							
	In order to understand the basic nature, scope and perspective of sociology and the							
	criteria of social research process and methodologies, it is required to							
CO1-PO10	communicate effectively on complex engineering activities with the engineering							
	community and with society at large, such as being able to comprehend and write							
	effective reports and design documentation, make effective presentations, and give							
	and receive clear instructions.							
	In order to apply contextual knowledge to assess societal and cultural issues in							
	national and global context and also environmental context for sustainable							
CO2-PO6	development, application of reasoning informed by contextual knowledge to							
	assess societal, health, safety, legal and cultural issues and the consequent							
	responsibilities relevant to professional engineering practice and solutions to							
	complex engineering problems is required.							
	In order to analyze Social problem, social stratifications, socialism, capitalism and							
CO3-PO6	economic life and political issues, application of reasoning informed by contextual							
	knowledge to assess societal, health, safety, legal and cultural issues and the							

TEACHING METHODOLOGY

Lectures, class performances, assignments, class tests, final exam

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning Time (SLT)
Face to Face	Lecture (2 hours/week x 14 weeks)	28
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent	Individual learning (1-hour lecture \approx 1-	24
Learning	hour learning)	13
	Preparation for tests and examination	
Assessment	Pop Quiz/Class Test/Mid-Term Exam	2
	Final examination	3
	TOTAL SLT	80
	CREDIT = SLT/40	2

COURSE SCHEDULE

Weeks	Lectures	ectures Lecture/Tutorial/Assignment Topic	
1	1. Definition, nature and scope of sociology		
	2.	Sociological imagination	
2	3.	Perspectives of sociology	Class test- 1, Final Exam
	4.	Orientation of sociological theories	Filiai Exaili
3	5.	Social research and its process	
	6.	Research designs and techniques.	
4	7.	Introducing culture and its variations	
	8.	civilization	
5	9.	Defining family and its changes	
	10.	Socialization process and development of self	
	11.	Introducing globalization and its impact on human life	
6	12.	2. Factors responsible to globalization	
7	13.	Media and its impact in modern society	7
	14.	Addressing social problems of Bangladesh	Class test- 2
8	15.	Introducing social groups and organizations	Mid Term
	16.	Introducing bureaucracy and good governance	Final Exam
	17.	Introducing social stratifications and social inequality	
9	18.	Poverty and its types and dimensions	
1	19.	Industrial revolution and aftermath	
0	20.	Urbanization and city development	
1	21.	Capitalism: features and influence	
1	22.	Socialism: features and influence	
1	23. Environment and human activities		Class 4 2
2	2 24. Climate change and global risk		Class test- 3 Final Exam
1	25.	Population of Bangladesh: problem or prospect	— Fillal Exalli

	3	26.	Crime and deviance: a brief analysis	
Ī	1	27.	Review 1	
	4	28.	Review 2	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1, CO2, CO3	C1, C2
Continuous	Assignment 1-3	2070	CO4, CO5	C3, C4
Assessment	Class	5%	CO6	
(40%)	Participation	3 /0	C00	
	Mid term	15%	CO2, CO4	C1, C2, C4
			CO1, CO2	C1, C2, , C4
Fine	al Exam	60%	CO3, CO4	C1, C2,C4
Piliai Exalli		0070	CO4, CO5	C5, C4
			CO6	C5, C4
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Sociology in Modules: by Richard Schaefer, 2nd edition, 2013
- 2. Sociology Primary Principles: by CN Shankar Rao
- 3. Anthony Giddens- 5th edition
- 4. Relevant journal

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GESL 311
Credit Hours: 2.00
Course Title: Environment, Sustainability and Industrial Law
Contact Hours: 2.00

Level and Term: Level 3 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The development of the modern law of the sea and the growing concern for the condition of the oceans have given rise to a number of legal regimes addressing problems of the marine environment including pollution, loss of biodiversity, protection of endangered species, and marine mammals. The international law of the sea provides a foundation for continuing progress. This course introduces to the international legal framework on marine pollution, which covers global and regional legally binding and non-legally binding agreements addressing different sources of pollution.

OBJECTIVES

- 1. To familiarize with marine environment and with the types and sources of marine environment pollution.
- 2. To impart the knowledge of the importance of the protection the oceans from pollution.
- 3. To give brief idea on international law at sea.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Identify** the sources of marine pollution and **explain** the impacts of sectorial marine activities.
- 2. **Describe** importance of the protection the oceans from pollution and **outline** the regional approach to combat pollution of the marine environment
- 3. **Explain** general aspects of pollution management for sustainable shipping
- 4. **Apply** the international laws of maritime environmental conservation in ship design and shipbuilding.

COURSE CONTENTS

- 1. **Introduction to Marine Environment:** Definition of the Marine Environment, importance of the marine environment, Scope of the Marine Environment (Different Maritime Zones)
- 2. **Pollution of Marine Environment:** Pollution of marine environment, types and sources of marine pollution (pollution from ships, pollution by dumping wastes at sea, land-based sources, pollution resulting from seabed activities)
- 3. **Impacts of Sectoral Marine Activities:** Impact of fishing activities on marine life, shipping, offshore oil and gas production and transformation, exploitation offshore wind energy, dredging for navigation, for environmental cleanup and for sand, environmental risk of deep sea mining, impacts of land-based activities, Pollution from diffusive sources

- 4. **General Aspects on Marine Environmental Protection:** General aspects of management and governance of human activities on marine environmental protection; Social drivers, development and perspectives of increasing ocean uses.
- 5. **International Environmental law of the Sea:** Major Developments in the International Law of Marine Pollution and Marine Environmental Conservation, Marine Wildlife Conservation in Law and Policy.

COURSE OUTCOMES - PROGRAM OUTCOMES MAPPAING

No	No. COURSE OUTCOMES (COs)		PROGRAM OUTCOMES (PO								(PO)	
110.			2	3	4	5	6	7	8	9	10	11	12
CO1	Identify the sources of marine pollution and explain the impacts of sectorial marine activities.		1										
CO2	Describe importance of the protection the oceans from pollution and outline the regional approach to combat pollution of the marine environment							V					
CO3	Explain general aspects of pollution management for sustainable shipping							√					
CO4	Apply the international laws of maritime environmental conservation in ship design and shipbuilding						√						

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Identify the sources of marine pollution and explain the impacts of sectorial marine activities.	C3, C4			1,3, 4	CT, F
CO2	Describe importance of the protection the ocean environment from pollution and outline the regional approach to combat pollution of the marine environment	C2,C4	1		7	CT, MT, F
CO3	Explain general aspects of pollution management for sustainable shipping and other ocean operations.	C2,C5	3,6	4	7	CT/ASG, F
CO4	Apply the international laws of maritime environmental conservation in ship design and shipbuilding	C3	G.F.		7	MT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
	The knowledge of theory based fundamental knowledge of this course will help the
CO1-PO2	students to define and distinguish the sources of marine pollution and explain the
	impacts of sectorial marine activities.
	Students will be able to describe importance of the protection the ocean environment
CO2-PO7	from pollution and able to find out sustainable solutions for various marine
	environmental issues.
	Students get a better understanding of the pillars of sustainable shipping and other
CO3-PO7	ocean operations through the marine environment pollution management which
	needed to be strengthened for sustainable development.
	Students will gain knowledge on several international law of sea related to maritime
CO4-PO6	environment which will make awareness of various environmental issues and it is
	needed to address while working as an engineer in a society.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning Time (SLT)					
Face to Face	Lecture (2 hours/week x 14 weeks)	28					
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10					
Independent	Individual learning (1-hour lecture \approx 1-	24					
Learning	hour learning)	13					
	Preparation for tests and examination						
Assessment	Pop Quiz/Class Test/Mid-Term Exam	2					
	Final examination	3					
	TOTAL SLT	80					
	$\mathbf{CREDIT} = \mathbf{SLT/40} \qquad \qquad 2$						

COURSE SCHEDULE

Week	Contents	Assessment
Week 1	Introduction to Marine Environment	
Class 1	Definition of the marine environment, importance of the marine environment	_
Class 2	Scope of the marine environment, different maritime zones	
Week 2	Pollution of Marine Environment	
Class 3	Definition of the pollution of marine environment and types of marine environment pollution	CT 1,
Class 4	Sources of marine pollution	Final Exam
Week 3	Pollution of Marine Environment (Contd.)	

Class 6 Review Week 4 Impacts of Sectoral Marine Activities Class 7 Assessment (CT-1) Class 8 Impact of fishing activities on marine life Week 5 Impact of fishing activities on marine life Class 9 Shipping Class 10 Offshore oil and gas production and transformation, exploitation offshore wind energy Week 6 Impacts of Sectoral Marine Activities (Contd.) Class 11 Dredging for navigation, for environmental cleanup and for sand Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Industrial principle of marine environment protection and future prospects of marine environmental Protection (Contd.) Class 17 Industrial principle of marine environmental Protection (Contd.) Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 21 Social drivers, development and perspectives of increasing ocean uses Class 22 Conservation Prospects at UNCLOS Week 11 International Environmental law of the Sea Class 23 Mapro L 1973 Class 24 OPRC, Marine Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2) Class 28 Revision Class	Class 5	Sources of marine pollution	
Class 7 Assessment (CT-1) Class 8 Impact of fishing activities on marine life Week 5 Impacts of Sectoral Marine Activities (Contd.) Class 9 Shipping Class 10 Offshore oil and gas production and transformation, exploitation offshore wind energy Week 6 Impacts of Sectoral Marine Activities (Contd.) Class 11 Dredging for navigation, for environmental cleanup and for sand Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impact of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Ulass 16 Institutional framework for marine environmental Protection (Contd.) Class 17 Industrial principle of marine environmental Protection (Contd.) Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 6	Review	
Class 8 Impact of fishing activities on marine life Week 5 Impacts of Sectoral Marine Activities (Contd.) Class 9 Shipping Class 10 Offshore oil and gas production and transformation, exploitation offshore wind energy Week 6 Impacts of Sectoral Marine Activities (Contd.) Class 11 Dredging for navigation, for environmental cleanup and for sand Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environmental protection (Contd.) Class 17 Industrial principle of marine environmental Protection (Contd.) Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 20 Assessment -3 (CT-2) Week 11 International Environmental Law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 11 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 4	Impacts of Sectoral Marine Activities	
Class 9 Shipping	Class 7	Assessment (CT-1)	
Class 10 Offshore oil and gas production and transformation, exploitation offshore wind energy Week 6 Impacts of Sectoral Marine Activities (Contd.) Class 11 Dredging for navigation, for environmental cleanup and for sand Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental law of the Sea (Contd.) Week 13 International Environmental law of the Sea (Contd.) Week 14 Class 27 Assessment -4 (CT-2)	Class 8	Impact of fishing activities on marine life	CT 2,
Class 10 Offshore oil and gas production and transformation, exploitation offshore wind energy Week 6 Impacts of Sectoral Marine Activities (Contd.) Class 11 Dredging for navigation, for environmental cleanup and for sand Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Institutional framework for marine environment governance Meek 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) CT 3, Final Exam of fauna and flora, convention biological diversity, migratory species Week 14 Class 27 Assessment -4 (CT-2)	Week 5	Impacts of Sectoral Marine Activities (Contd.)	Final Exam
offshore wind energy Week 6	Class 9	Shipping	
Class 11 Dredging for navigation, for environmental cleanup and for sand	Class 10	Offshore oil and gas production and transformation, exploitation	
Class 11 Dredging for navigation, for environmental cleanup and for sand Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environmental Protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)		offshore wind energy	
Class 12 Environmental risk of deep sea mining Week 7 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 6	Impacts of Sectoral Marine Activities (Contd.)	
Class 13 Impacts of Sectoral Marine Activities (Contd.) Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 11	Dredging for navigation, for environmental cleanup and for sand	
Class 13 Impacts of land-based activities, Pollution from diffusive sources Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 12	Environmental risk of deep sea mining	
Class 14 Assessment -2 (CT-2) Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 7	Impacts of Sectoral Marine Activities (Contd.)	
Week 8 General Aspects on Marine Environmental Protection Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environmental Protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 13	Impacts of land-based activities, Pollution from diffusive sources	
Class 15 Challenges and foundation of sustainable ocean governance Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 14	Assessment -2 (CT-2)	
Class 16 Institutional framework for marine environment governance Week 9 General Aspects on Marine Environmental Protection (Contd.) Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 8	General Aspects on Marine Environmental Protection	
Mid Term, Class 17 Industrial principle of marine environmental Protection (Contd.) Class 18 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 15	Challenges and foundation of sustainable ocean governance	
Class 17 Industrial principle of marine environment protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 16	Institutional framework for marine environment governance	
Class 17 Industrial principle of marine environmental protection and future prospects of marine environmental governance Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 9	General Aspects on Marine Environmental Protection (Contd.)	,
Class 18 Marine Management on sustainable shipping and hazardous substance in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 17	Industrial principle of marine environment protection and future	Final Exam
in the marine environment Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)		prospects of marine environmental governance	
Week 10 General Aspects on Marine Environmental Protection(Contd.) Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 18	Marine Management on sustainable shipping and hazardous substance	
Class 19 Social drivers, development and perspectives of increasing ocean uses Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week 13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)		in the marine environment	
Class 20 Assessment -3 (CT-2) Week 11 International Environmental law of the Sea Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 10	General Aspects on Marine Environmental Protection(Contd.)	
Class 21 Major Developments in the International Law of Marine Pollution	Class 19	Social drivers, development and perspectives of increasing ocean uses	
Class 21 Major Developments in the International Law of Marine Pollution Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 20	Assessment -3 (CT-2)	
Class 22 Conservation Prospects at UNCLOS Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 11	International Environmental law of the Sea	
Week 12 International Environmental law of the Sea (Contd.) Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 21	7	
Class 23 MARPOL 1973 Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 22	Conservation Prospects at UNCLOS	
Class 24 OPRC, Marine Environmental Hazard Control Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week 12	International Environmental law of the Sea (Contd.)	
Week13 International Environmental law of the Sea (Contd.) Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 23	MARPOL 1973	
Class 25 Wildlife Conservation in Law and Policy (Fisheries, climate change, Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 24	OPRC, Marine Environmental Hazard Control	
Exotic species,) Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Week13	International Environmental law of the Sea (Contd.)	
Class 26 Wildlife Conservation in Law and Policy (challenges of marine wildlife conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 25	Wildlife Conservation in Law and Policy (Fisheries, climate change,	
conservation, convention on international trade in endangered species of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)		Exotic species,)	
of fauna and flora, convention biological diversity, migratory species) Week 14 Class 27 Assessment -4 (CT-2)	Class 26	Wildlife Conservation in Law and Policy (challenges of marine wildlife	CT 3,
Week 14 Class 27 Assessment -4 (CT-2)		conservation, convention on international trade in endangered species	Final Exam
Class 27 Assessment -4 (CT-2)		of fauna and flora, convention biological diversity, migratory species)	
, , ,	Week 14		
Class 28 Revision Class	Class 27	Assessment -4 (CT-2)	
	Class 28	Revision Class	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	ponents	Grading	COs	Blooms Taxonomy
Continuous	Class Test/	20%	CO1	C1, C2,

Assessment	Assignment 1-3		CO2	C1,C2				
(40%)	(40%)		CO3	C3, C4				
	Class	5%	CO4					
	Participation	370		370		370		
	Mid term	15%	CO2, CO4	C1, C2, C4				
			CO1	C1, C2,C2				
Eine	al Exam	60%	CO2	C1, C2,C4				
11116	ai Exaili	0070	CO3	C2,C3, C5				
			CO4	C1, C2				
Tota	al Marks	100%						

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. 'The environmental law of the sea' edited by Douglas M. Johnston Published by (1981)
- 2. 'Handbook on Marine Environment Protection(Science, Impacts and Sustainable Management)' edited by Salomon, Markus, Markus, Till
- 3. 'Handbook on the Economics and Management of Sustainable Oceans' by Edited by Paulo A.L.D. Nunes (et. al)
- 4. 'Protection of the marine environment under international law' by Yousef H. Almutairi (2016)
- 5. 'International law and the protection of the marine environment' by Howard S. Schiffman

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GERM 352 Credit Hours: 2.0
Course Title: Fundamentals of Research Methodology Contact Hours: 4.0

Level and Term: Level 4 Term I

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The Fundamentals of Research Methodology is a hands-on course designed to impart education in the foundational methods and techniques of academic research in Science and Engineering context. UG students would examine and be practically exposed to the main components of a research framework i.e., problem definition, research design, data collection, ethical issues in research, time management, report writing, and presentation. Once equipped with this knowledge, participants would be well-placed to conduct disciplined research under supervision in an area of their choosing. In addition to their application in an academic setting, many of the methodologies discussed in this course would be similar to those deployed in professional research environments.

OBJECTIVES

The primary objective of this course is to develop a research orientation among the UG students and to acquaint them with fundamentals of research methods. Some other objectives of the course are:

- 1. To evaluate/review related extant literature, form a variety of sources, pertinent to the research objectives/questions.
- 2. To expose students to various research methodologies (design), relevant to the research problem needing to be addressed.
- 3. To explain and justify how researchers will collect and analyze research data.
- 4. To educate students in the common mistakes, research misconduct, and ethical considerations in the field of research methodology.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Understand** the research fundamentals and **formulate** problem statement and research questions/objectives.
- 2. **Formulate** and **compose** a research proposal considering research activities/design, background studies, and following standard guidelines.
- 3. **Develop writing** and presentation skill, and **demonstrate** ethical considerations in conducting Research.

COURSE CONTENTS

1. Foundations of Research: Meaning of Research; Definitions of Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good

Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method.

- **2 Problem Identification and Formulation:** Meaning and need of Review of Literature; How to Conduct the Review of literature; Research Question Investigation Question Measurement Issues Hypothesis Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing Logic & Importance.
- **3 Research Design:** Concept and Importance in Research Features of a good research design Exploratory Research Design concept, types and uses, Descriptive Research Designs concept, types and uses. Experimental/Computational Design: Concept of Independent & Dependent variables.
- **4 Data Analysis:** Data Preparation Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis Cross tabulations and Chi-square test including testing hypothesis of association.
- **5. Research Misconduct and Ethics:** Understand the research misconduct; type of research misconduct; Ethical issues in conducting research; Ethical issues related to publishing, Plagiarism and Self-Plagiarism.
- **6.** Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to search required information effectively; Reference Management Software like Zotero/Mendeley; Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiarism. Time management and developing Gantt Charts.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOMES (COs)		RO	GR	A	M	O	UT	C	ON	Æ ((PO	s)
110	COURSE OUTCOMES (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	Understand the research fundamentals and												
CO-1	formulate problem statement and research												
	questions/objectives.												
	Formulate and compose a research proposal												
CO-2	considering research activities/design, background												$\sqrt{}$
	studies, and following standard guidelines.												
	Develop writing and presentation skill, and												
CO-3	demonstrate ethical considerations in conducting										$\sqrt{}$		
	Research.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOME (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand the research fundamentals and formulate problem statement and research questions/objectives.	С3			1	ASG/Q
CO2	Formulate and compose a research proposal considering research activities/design, background studies, and following standard guidelines.	C3			1	R/Pr/ASG/ Q

СОЗ	Develop writing and presentation skill, and demonstrate ethical considerations in conducting Research.	C2		1	R/Pr /ASG		
(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create;							
CP- C	Complex Problems, CA-Complex Activities, K	P-Knowledge	Profile, T -	- Test,	PR – Project,		
Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term							
Exam)							

TEACHING METHODOLOGY

Lecture and Discussion, Mini-Seminars by Experts, Co-operative and Collaborative Method and Problem Based Method

TEACHING LEARING STRATEGY

Teaching and learning activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	14
Student-Centred Learning	08
Self-directed learning	
Non face-to-face learning Revision	08
Report preparations	14
Formal Assessment	
Continuous Assessment	1.5
Report Submission (2)	-
Presentation (2)	0.5
Total	60

COURSE SCHEDULE

Week	Topics			
2 3	Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method. Practice session on Foundations of Research Problem Identification & Formulation: Meaning & need of Review of Literature; How to Conduct the Review of literature; Research Question — Investigation Question — Measurement Issues — Hypothesis — Qualities of a good Hypothesis —Null Hypothesis & Alternative Hypothesis. Hypothesis Testing — Logic & Importance. Practice session on Problem Identification & Formulation			
4	Practice session on Problem Identification & Formulation	Assignment 1		
5	Research Design: Concept and Importance in Research -	Assignment has to		
	Features of a good research design - Exploratory Research	provide before,		
	Design – concept, types and uses, Descriptive Research Designs	here students will		

	- concept, types and uses. Experimental Design:	submit report and
	Concept of Independent & Dependent variables.	give PPT
6	Practice session on Research Design	
7	Data Analysis: Data Preparation – Univariate analysis	
	(frequency tables, bar charts, pie charts, percentages), Bivariate	
	analysis – Cross tabulations and Chi-square test including	
	testing hypothesis of association.	
8	Practice session on Data Analysis	
9	Research Misconduct and Ethics: Understand the research	
	misconduct; type of research misconduct; Ethical issues in	
	conducting research; Ethical issues related to publishing,	
	Plagiarism and Self-Plagiarism.	
10	Practice session on Research misconduct and Ethics	
11	Use of Tools / Techniques for Research: Layout of a Research	
	Paper; Methods to search required information effectively;	Continuous
	Reference Management Software like Zotero/Mendeley;	Assessment
	Software for paper formatting like LaTeX/MS Office;	(presentation/
	Software for detection of Plagiarism. Time management and	quiz/other
	developing Gantt Charts.	assignment)
12	Practice session on Use of tools / techniques for Research	
12	D : G : (TI)	
13	Review Session (Theory) – I	Assignment 2
	/Final Presentation	Assignment has to
14	Review Session (Practice) – II	provide before,
	/Final Presentation	here students will
		submit report and
		give PPT

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Assessment Crite	eria	CO	Blooms Taxonomy
Components	Grading		
Assignment I	20%	CO1 and CO3	C2-C3
Assignment II	50%	CO2 and CO3	C2-C3
Continuous Assessment	30%	CO1 and CO2	C2-C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Engineering Research Methodology: A Practical Insight for Researchers. Springer, by Deb, Dipankar, Dey, Rajeeb, Balas, Valentina E.
- 2 Research Methods for Engineers, 1st Edition, by David V. Thiel.
- 3. Handbook of Research Methodology by Talati, J.K.
- 4. Introducing Research Methodology: A Beginner's Guide to Doing a Research Project by Uwe Flick
- 5. DRM, a Design Research Methodology by Lucienne T.M. Blessing and

- Amaresh Chakrabarti
- 6. Research Methods: Information, Systems, and Contexts by Kirsty Williamson, Graeme Johanson
- 7. Zelkowitz, M. V. and Wallace, D. R. (1998), Experimental models for validating technology, *Computer*, vol. 31, no. 5, pp. 23-31.
- 8. Internet, mail, and mixed-mode surveys: the tailored design method (3rd ed.) by Dillman, D. A., Smyth, J. D., & Christian, L. M.
- 9. Improving survey questions: design and evaluation. Sage Publications, by Fowler, F. J.
- Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.).
 Mahwah, NJ: Lawrence Erlbaum Associates, by Cohen, J., Cohen, P., West, S., & Aiken,
 L.
- 11. Experimental and Quasi-Experimental Design for Generalized Causal Inference. Boston, Mass: Houghton Mifflin, by Shadish W.R., Cook T.D. & Campbell P.T.
- 12 Computational handbook of statistics (4th ed.). New York: Longman, by Bruning, J. L. & Kintz, B. L.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GEA 407 Credit Hours: 2.00
Course Title: Principles of Accounting Contact Hours: 2.00

Level and Term: Level 4 Term I

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The course provides students with a basic grounding in topics such as assets and liabilities, financial analysis, planning and budgeting and investment appraisal with specific reference to unique aspects of finance and accounting in the realm of engineering, all of which are important in understanding accounting and finance. It is comprised of a variety of different learning resources including case studies of financial decision making in business and examples of when things go wrong and how this can be avoided.

OBJECTIVES

- 1. To know the meaning, history and definition of accounting, the users and uses of accounting, importance of ethics in financial reporting.
- 2. To impart knowledge, the International Financial Reporting (IFRS), Generally Accepted Accounting Principles (GAAP), cost principle, monetary unit assumption and the economic entity assumption.
- 3. To familiarize with and enable to prepare and understand the worksheet, preparation of financial statements, cost benefits analysis of different projects with honesty and integrity.
- 4. To provide the students with an in-depth knowledge of Management Accounting to enable them to apply its methods and techniques for preparing and presenting information for management decision-making and control purposes.
- 5. To apply selected management accounting techniques and analyze the implications of the techniques with regards to cost-volume profit analysis, budgeting, standard costing and variance analysis.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Understand** the cost principle, monetary unit assumption and the economic entity assumption and ethics in financial reporting for each and every project.
- 2. **Understand** worksheet, preparation of financial statements, cost benefit analysis of different projects.
- 3. **Acquire** knowledge of Management Accounting and apply it for preparing and presenting information for management decision-making and control purposes.
- 4. **Apply** and **analyze** the cost-volume profit, budgeting, standard costing and variance analysis for any project.

COURSE CONTENTS

1. Accounting in Action

- a. History & Definition of Accounting,
- b. Objectives and Importance of Accounting
- c. Accounting & Engineering
- d. International Financial Reporting Standard (IFRS), Generally Accepted Accounting Principles (GAAP), Ethics in Accounting
- e. Accounting Equation (Math)
- 2. **Recording Process:** Journal, Ledger, T-account and Trial balance
- 3. **Adjusting the Accounts :** Adjusting Entries , Adjusted Trial Balance, Income Statement, Retained Earnings Statement and Statement of Financial Position (Balance Sheet) , Worksheet
- 4. **Financial Statement Analysis:** Horizontal Analysis, Vertical Analysis and Ratio Analysis.
- 5. **Computerized Accounting System:** Manual vs. Computerized Accounting system, Some Accounting Software: NetSuite ERP. Tipalti. Sage Business Cloud Accounting. Sage 50cloud. Plooto. Tradogram. Tally accounting software.

6. Cost Concepts:

- a. Explain The Distinguishing Features of Managerial Accounting
- b. Identify The Three Broad Functions of Management
- c. Classification of Costs on Various Bases
- d. Indicate How Cost of Goods Manufactured is Determined, Break Even Point (BEP) for Different Projects.

7. Absorption costing and Variable costing:

- a. Prepare Profit Statements Based on a Variable Costing and Absorption Costing System
- b. Cost Volume Profit (CVP) Analysis for different engineering projects
- c. Account for the difference in profits between variable and absorption costing profit calculations
- d. Explain the arguments for and against variable and absorption costing

8. Job Order Costing and Process Costing:

- a. Job Order Costing
- b. Process Costing

9. Short & Long-Term Decision-Making in Accounting:

- a. Relevant & Irrelevant Costs for Decision-Making
- b. How to Determine Costs & Make Decisions
- c. Contrast annual rate of return and cash Payback in Capital Budgeting, Budgeting for Various Engineering Projects.
- d. Distinguish between the Net Present Value And Internal Rate Of Return Method

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No	COURSE OUTCOMES (COs)		PROGRAM OUTCOME (POs)										
140	COURSE OUTCOMES (COS)	1	1 2		4	5	6	7	8	9	10	11	12
CO-1	Understand the cost principle, monetary unit assumption and the economic entity assumption and ethics in financial reporting for each and every project.												
CO-2	Understand worksheet, preparation of financial statements, cost benefit analysis of different projects.	,											
со-3	Acquire knowledge of Management Accounting and apply it for preparing and presenting information for management decision-making and control purposes.		√										
CO-4	Apply and analyze the cost-volume profit, budgeting, standard costing and variance analysis for any project.											√	

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO-1	Understand the cost principle, monetary unit assumption and the economic entity assumption and ethics in financial reporting for each and every project.	C2			1-4	Pop Quiz, F
CO-2	Understand worksheet, preparation of financial statements, cost benefit analysis of different projects.	C2			1-4	MT, F
CO-3	Acquire knowledge of Management Accounting and apply it for preparing and presenting information for management decision-making and control purposes.	C2			1-4	CT, F
CO-4	Apply and analyze the cost-volume profit, budgeting, standard costing and variance analysis for any project.	C4			1-4	CT, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

TEACHING METHODOLOGY

Lectures, class performances, assignments, class tests, final exam

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning

		Time (SLT)				
Face to Face	Lecture (2 hours/week x 14 weeks)	28				
Guided Learning	Tutorial/ Assignments (2 hours/week x	10				
	5 weeks)	10				
Independent	Individual learning (1-hour lecture ≈ 1	24				
Learning	hour learning)	13				
	Preparation for tests and examination	13				
Assessment	Pop Quiz/Class Test/Mid-Term Exam	2				
	Final examination	3				
	TOTAL SLT 80					
	$\mathbf{CREDIT} = \mathbf{SLT/40} \qquad \qquad 2$					

COURSE SCHEDULE

Lectures	Lecture/Tutorial/Assignment Topic	CT
Week-1		
1	Meaning, history and definition of accounting	
2	The users and uses of accounting.	
Week-2		
3	Ethics in financial reporting	1
4	The cost principle, monetary unit assumption and the economic entity assumption	
Week-3	economic entry assumption	
5	Accounting equation and its components	
6	The effects of business transactions on the accounting	
Week-4	The creation of desimess transactions on the decounting	1
7	Four financial statements and how they are prepared.	
8	Journal	
Week-5	Journal	1
9	Journal	1
10	T-account, Ledger, Trial balance	1
Week-6		
11	Adjusting Accounts	-
12	Worksheet.	
Week-7		2
13	Completion of the Accounting cycle.	
14	Financial Statement Analysis	1
Week-8	•	1
15	Managerial Accounting Basics	
16	Cost Concepts	
Week-9		
17	Job Order Cost Accounting	1
18	Job Order Cost Accounting	
Week-10		
19	Process Cost Accounting	
20	Process Cost Accounting	1

Week-11		
21	Cost-Volume-Profit Relationships	
22	Cost-Volume-Profit Relationships	
Week-12		
23	Performance Evaluation through Standard Costs	
24	Performance Evaluation through Standard Costs	3
Week-13		
25	Incremental Analysis	
26	Incremental Analysis	
Week-14		
27	Capital Budgeting	
28	Capital Budgeting	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Com	Components		COs	Blooms Taxonomy
	Class Test/		CO1	C1, C2
Continuous	Assignment 1-3	20%	CO2	C1,C2
Assessment	· ·		CO3	C3, C4
(40%)	Class Participation	5%	CO4	
	Mid term	15%	CO2, CO3	C1, C2, C4
Fine	Final Exam 60%		CO1, CO2	C1, C2, , C4
Filiai Exaili		0070	CO3, CO4	C1, C2,C4
Tota	ıl Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Financial Accounting IFRS edition by Weygand, Kimmel & Kieso (3th)
- 2. Accounting Principles by Weygandt, Kieso& Kimmel (IFRS Latest edition)

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GEEM 441 Credit Hours: 2.00
Course Title: Engineering Ethics and Moral Philosophy Contact Hours: 2.00

Level and Term: Level 4 Term 2

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course is an introduction to engineering ethics, which stresses analytical reasoning and emphasizes clear thinking regarding the application of professional ethical codes to specific cases. Theory includes ethics and moral philosophy of engineering which approaches to ethical issues include: analyzing the factual, conceptual, application, and moral aspects of an issue; evaluating the risks and responsibilities of a particular course of action; and using theories of ethics or codes of ethics developed by engineering societies as a basis for decision making. Ethics can be built into the education of engineering students and professionals, either as an aspect of courses already being taught or as a component of engineering projects to be examined along with research findings. This course will help students to conceptualize the dynamics of the ethical practice in the Naval Architecture and Marine Engineering domain.

OBJECTIVES

- 1. To develop student's ability in analyzing and interpreting the real life situation and to enhance the student's Moral/ Ethical integrity for the practice of Engineering Profession.
- 2. To develop attitudes required from engineers and values shared by engineers.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Explain** the basic perception of profession, professional code of ethics, various moral & social issues, industrial standards and role of professional ethics in engineering field.
- 2. **Identify** and **analyze** practical legal problems commonly encountered by engineers in their professional field/industry and **formulate** solutions to some of the legal problems
- 3. **Practice** professional responsibilities of an engineer for safety and risk benefit analysis.
- 4. **Assess** the codes of professional conduct and their implications in Naval Architecture and Marine Engineering field.

COURSE CONTENTS

- 1. Introduction to Engineering ethics and professionalism; History and development of engineering ethics and Ethical theories; Ethics and law, Nature of ethical problems, Analysis of Ethical Problems, Types of issues in ethical problem solving.
- 2. Applied ethics in engineering: Case Studies of ethics and Ethical Problem-Solving Techniques; Risk, Safety, and Accidents;
- 3. Engineer's Responsibilities and Rights; Human qualities of an engineer. Obligation of an

- engineer to the clients.
- 4. Introduction to Philosophy of Engineering; Professional Engineering Codes, Moral Reasoning and Codes of Ethics, Codes of Ethics (IEB); Code of Ethics (BAERA & IAEA), Moral Frameworks for Engineering Ethics, Attitude of an engineer to other engineers. Measures to be taken in order to improve the quality of engineering profession.
- 5. Ethical expectation: Employers and employees, inter-professional relationship, Professional Organization maintaining a commitment of ethical standards. Desired characteristics of a professional code. Institutionalization of ethical conduct. Environmental Ethics.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No.	COURSE OUTCOME (COs)]	PRO	GF	RAM	JO I	JTC	OM	ES (F	Os)	
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the basic perception of profession, professional code of ethics, various moral & social issues, industrial standards and role of professional ethics in engineering field.								V				
CO2	Identify and analyze practical legal problems commonly encountered by engineers in their professional field/industry and formulate solutions to some of the legal problems						~						
CO3	Practice professional responsibilities of an engineer for safety and risk benefit analysis.						V						
CO4	Assess the codes of professional conduct and their implications in Naval Architecture and Marine Engineering field.												√

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	CP	CA	KP	Assessment Methods
CO1	Explain the basic perception of profession, professional code of ethics, various moral & social issues, industrial standards and role of professional ethics in engineering field.	C2,C3	ı	ı	1	T, Q, F
CO2	Identify and analyze practical legal problems commonly encountered by engineers in their professional field/industry and formulate solutions to some of the legal problems	C1, C2, C3	1	ı	1	T, Q, F
CO3	Practice professional responsibilities of an engineer for	C4	-	-	1	MT, F

	safety and risk benefit analysis.					
CO 4	Assess the codes of professional conduct and their implications in Naval Architecture and Marine Engineering field.	C2	1	-	1	T, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATIONS OF CO-PO MAPPAING

Mapping	Justifications
	In order to develop foundation knowledge of ethics to be applied in professional
CO1-PO8	fields, application of ethical principles and commit to professional ethics and
	responsibilities and norms of engineering practice is required.
	In order to be able to identify practical and legal problems commonly encountered by
	engineers in their professional field/industry application of reasoning informed by
CO2-PO6	contextual knowledge to assess societal, health, safety, legal and cultural issues and
	the consequent responsibilities relevant to professional engineering practice and
	solutions to complex engineering problems is required
	In order to be able to Practice professional responsibilities of an engineer for safety
	and risk benefit analysis commonly encountered by engineers in their professional
CO3-PO6	field/industry application of reasoning informed by contextual knowledge to assess
CO3-FO0	societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to professional engineering practice and solutions to complex engineering
	problems is required
	In order to engage in lifelong learning through acquiring knowledge on legal and
CO4-PO12	ethical aspects of professions of Naval Architecture and Marine Engineering, it is
	required to recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	14
Revision of the previous lecture at home	14
Preparation for final examination	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3

Total	75
1000	10

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to ethics, history, evolution, need and importance of	
	ethics in Naval Architecture and Marine Engineering technology,	Class Test
	ethical terminology	1,Final Exam
Week-2	Introduction to the Engineering Ethics: purpose, objectives, scope,	
	methods etc.	
Week-3	Introduction to Philosophy of Engineering	
Week-4	Professional Engineering Codes, Codes of Ethics (IEB)	
Week-5	Code of Ethics (IAEA)	Class Test 2,
Week-6	Code of Ethics (BAERA)	Final Exam
Week-7	Ethical Problem Solving Techniques	1 11W1 21W11
Week-8	Whistle Blowing.	Mid Term,
Week-9	Case study methodology, different case studies	Final Exam
Week-10	The Rights and Responsibilities of Engineers	
Week-11	Ethical Issues in Engineering Practice	
Week-12	Ethics Issues in Naval Architecture and Marine Engineering	Class Test 3,
	Technology	Final Exam
Week-13	Safety, Risk and Liability	I III DAUIII
Week-14	Trust and reliability	

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	COs	Blooms Taxonomy
	Class Test/	20%	CO1	C1,C2
Continuous	Assignment 1-3	2070	CO3	C1,C2
Assessment	Class	5%	CO2	
(40%)	Participation	370	CO2	
	Mid term	15%	CO2, CO3	C2,C3,C4
			CO1	C1-C3
Final Exam		60%	CO2	C1-C3
			CO3	C1-C3
Tota	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Charles E. Harris, et el. *Engineering Ethics: Concepts and Cases*, Cengage Learning Boston, USA: 4th Edition, 2009.
- 2. Charles B. Fleddermann, Engineering Ethics, 4th Edition, NewYork, USA: Mc-Grawhill: 2012.
- 3. Davis, M., ed. Engineering Ethics. Farnham, United Kingdom Ashgate Publishing Co, 2005.

Military Institute of Science and Technology Department of Naval Architecture and Marine Engineering

COURSE INFORMATION

Course Code: GEPM 471 Credit Hours: 2.00
Course Title: Project Management and Finance Contact Hours: 2.00

Level and Term: Level 4 Term 1

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course has been designed to understand the overlapping connection between engineering and management with financial matters in an organization through the study of varied management practices and finance as an engineer.

OBJECTIVES

- 1. To introduce some aspects of business management and business organization.
- 2. To identify the tools and techniques needed to lead any project to its intended conclusion.
- 3. To introduce sales fundamentals include understanding the customer and the competition, sales strategy, sales management, product positioning, product life cycle, sales structures, margins, and prospecting for new customers.

COURSE OUTCOMES (COs)

On successful completion of this course, students should be able to:

- 1. **Develop** in depth idea on ship design and building project management and organization to perform the Management Functions.
- 1. **Compare** between selected Theories of Management.
- 2. **Design** ship building project and to perform the functions in the Marketing Mix.
- 3. **Develop** knowledge of effective material management; management and resource allocation; Engineering economy and assessment on ethical issues in business situations.

COURSE CONTENTS

- 1. **Management Functions and Organization:** Evolution; Management functions: organization, theory and structure, span of control, authority delegation, manpower planning.
- 2. **Human Resource Management:** Importance, need hierarchy, motivation, leadership, wage incentives, performance appraisal and participative management.
- 3. **Production Control and Management Strategy:** Production planning and control (PPC) functions, quantitative methods applied in production, quality management, location and layout planning, safety and loss management, cost management elements of cost of products, cost centers and allocation of overhead costs.
- Management Accounting: Marginal costing, standard costing, cost planning and control, budget and budgetary control, development and planning process, annual development plan and National budget.

- 5. **Investment Management:** Objectives, strategy, investing, performance analysis of enterprise, investment appraisal, criteria of investment, cost planning and control, budget and budgetary control.
- 6. **Retail and Technology Management:** Concepts, strategy, sales promotion, patent laws, technology management, management of innovation and changes, technology life cycle.
- 7. **Scheduling Management:** Resource schedule, project schedule management, time-phased costs, budget baseline management.

MAPPING OF COURSE OUTCOMES AND PROGRAM OUTCOMES

No. COURSE OUTCOME (COs)		PROGRAM OUTCOMES (PO)											
No.	COURSE OUTCOME (COS)	1	2	3	4	5	6	7	8	9	10	11	12
	Develop in depth idea on ship												
CO1	design and building project												
	management and organization to												
	perform the Management Functions.												
CO2	Compare between selected												
	Theories of Management.												
	Design ship building project and to												
CO3	perform the functions in the												
	Marketing Mix.												
	Develop knowledge of effective												
	material management,												
CO4	management and resource											$\sqrt{}$	
	allocation; Engineering economy												
	and assessment on ethical issues in												
	business situations.												

COURSE OUTCOMES & GENERIC SKILLS

No.	COURSE OUTCOMES (COs)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Develop in depth idea on ship design and building project management and					
CO-1	organization to perform the Management	C3	1	-	1	CT, Q, F
	Functions.					
CO-2		C4	2	1	1	ASG, F
	of Management.					
GO 4	Design ship building project and to					
CO-3	perform the functions in the Marketing	C5	2	-	1	MT, F
	Mix.					
	Develop knowledge of effective material					
	management, management and resource					
CO-4	allocation; Engineering economy and	C6	3	1	2	CT, F
	assessment on ethical issues in business					
	situations.					
(C1 –	Remember, C2 – Understand, C3 – Apply, C4	– Analyze, C	25 - E	valuat	e, and	C6 – Create;

CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

JUSTIFICATION OF CO-PO MAPPINGS

Mapping	Justification				
	The knowledge of mathematics, science, and engineering fundamentals is				
CO1-PO1 required to develop in depth idea on ship building industrial man					
	and organization to perform the Management Functions.				
CO2-PO1	The knowledge of mathematics, science, Engineering fundamentals is required				
	to compare between selected Theories of Management.				
	In order to develop a ship deesign project and to perform the functions in the				
CO3-PO2	Marketing Mix, identification, formulation, research literature and analysis of				
	complex engineering problems are required to reach substantiated conclusion				
	using first principles of mathematics, sciences and engineering fundamentals.				
	In order to develop knowledge of effective material management; Students				
	will learn Management and resource allocation; Engineering economy and				
CO4-PO11	assessment on ethical issues in Business situations, it is required to				
	demonstrate knowledge and understanding of engineering management				
	principles and economic decision- making and apply these to one's own work,				
	as a member and leader in a team, to manage projects and in multidisciplinary				
	environments.				

TEACHING METHODOLOGY

Lectures, class performances, assignments, class tests, final exam

TEACHING LEARING STRATEGY

Components	Teaching and Learning Activities	Student Learning Time (SLT)
Face to Face	Lecture (2 hours/week x 14 weeks)	28
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent Learning	Individual learning (1-hour lecture ≈ 1 hour learning) Preparation for tests and examination	24 13
Assessment	Pop Quiz/Class Test/Mid-Term Exam Final examination	2 3
	TOTAL SLT	80
	CREDIT = SLT/40	2

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Management Functions and Organization: Evolution	

Week-2	Management frontiers, arguination theory and atmenture area of	
week-2	Management functions: organization, theory and structure, span of	
	control, authority delegation, manpower planning	
Week-3	Management functions: organization, theory and structure, span of	Class
	control,	Test 1,
	authority delegation, manpower planning	Final
Week-4	Personnel Management: Importance, need hierarchy, motivation	Exam
Week-5	leadership, wage incentives, performance appraisal, participative management	
Week-6	Operation Management : Production planning and control (PPC)	
	functions, quantitative methods applied in production	Mid Tem,
Week-7	Quality management, location and layout planning, safety and loss	Final
	management	Exam
Week-8	Cost management elements of cost of products, cost centres and	
	allocation of overhead costs	
Week-9	Management accounting: marginal costing, standard costing, cost	
	planning and	
	control, budget and budgetary control	
Week-10	Development and planning process; annual development plan;	
	National budget	
Week-11	Financial management : objectives, strategy, financing, performance	Class
	analysis of enterprise, investment appraisal, criteria of investment	Test 2,
Week-12	Management Accounting: Cost planning and control, budget and	Final
	budgetary control	Exam
Week-13	Marketing Management: Concepts, strategy, sales promotion, patent	
	laws	
Week-14	Technology Management; Management of innovation and changes,	
	technology life cycle	
-		•

LINKAGE OF CO WITH ASSESSMENT METHODS & THEIR WEIGHTS

Components		Grading	СО	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C6
Assessment	Class Participation	5%	CO1, CO2	C3, C4
(40%)	Mid term	15%	CO3	C5
	Final Examination	60%	CO1-CO4	C3, C4,C5, C6
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. P. Kotler, K. L. Keller, Marketing Management, 15th ed., Pearson, 2016
- 2. D. H. Besterfield, G. Besterfield, Total Quality Management, 3rd ed,. Prentice Hall, 2002
- 3. J. Liker, The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer, 1st ed., McGraw-Hill Education, 2004

ANNEX-A

CHAPTER 4. CRITERIA (BAETE MANUAL 2019 VERSION 2)

This section presents the criteria that a program must meet to become accredited. The following subsections sequentially outline the ten major criteria.

4.1 Organization and Governance

Major positions should be filled, and the statutory bodies/committees of the institution should be formed in accordance with the applicable rules and guidelines. These positions include Vice Chancellor, Pro-Vice Chancellor, Treasurer, Dean, and Chairperson and bodies/committees such as the Board of Trustees, Syndicate, Academic Council, Admission Committee, Finance Committee, Curriculum Committee and the Faculty Selection Committee. The position appointees and committee members should function effectively as per the roles defined in the relevant act/statute.

The institution should have published policies, including a mechanism for addressing grievances, regarding academic and administrative matters involving students, faculty members and non-teaching employees. These policies should be put into practice.

4.2 Financial and Physical Resources

The financial resources of the institution should be adequate to fulfill its mission and vision. The financial resources committed to the program should also be sufficient for the appropriate functioning of the program, including recruiting and retaining qualified faculty members, and procuring the necessary lab equipment and equipment and tools to support teaching and learning.

The institution should have a process for budget planning and allocate resources to the priority areas as required. The campus infrastructure, such as the extent of the land and built-up area, extra- and co-curricular facilities, and support facilities, including maintenance support for infrastructure and facilities, should be adequate for the total number of students and employees at the institution.

The possibility of any risk from manmade or natural hazards should be properly assessed and addressed in the Safety Plan. All labs shall have their own plans to prevent and manage incidents and accidents. Fire detection and firefighting facilities should be adequate. An action plan is required to address safety issues as the situation demands. Adequate measures should be in place to make the campus safe for students, employees and visitors.

4.3 Faculty

The department should have a sufficient number of full-time faculty members to ensure that the faculties are not overloaded with courses and that the program does not become overly dependent on part-time faculty members.

The faculty members should have adequate academic qualifications with specializations in areas closely related to the program(s) offered by the department. The proportion of senior faculty members and junior faculty members should be appropriate. Adequate interaction between students and faculty members both within and outside classes is essential. The teacher-student ratio, class size and teaching load should not compromise opportunities for interaction.

Faculty members should be motivated to improve their pedagogy and assist the students in achieving outcomes. They should be committed to the continuous quality improvement activities of the department. Faculty members should have the responsibility and authority to design and update the curriculum; establish course and program outcomes, and select and use appropriate assessment tools for evaluating student performance in classes and the achievement of outcomes.

Faculty members should be engaged in research, development and professional activities such as consulting. They should also be involved in relevant professional societies. The results of these activities should benefit the students. The institution or department should periodically arrange training for the faculty members on outcome- based education and assessment. All the faculty members should be adequately trained on how to establish course outcomes, conduct teaching-learning activities that are appropriate for the outcomes and assess the level of outcome achievement.

4.4 Students

There should be a published policy for the admission and transfer of students into the program. The admission or transfer requirements should be appropriate for the selection of students with the potential to achieve the program's outcomes. The policy should be implemented in practice. Transfer students must also show the attainment of program outcomes from courses in the institution.

Students' academic performance should be continuously monitored in terms of the achievement of outcomes, and feedback should be provided to the students. There should be provisions for remedial or corrective measures when necessary. Every student should be assigned an advisor. The advisor should counsel, guide and mentor the student on all academic and professional matters.

Students should have opportunities to participate in extra- and co-curricular activities and the activities of relevant professional societies. The institution should ensure the participation of a significant number of students.

4.5 AcademicFacilities and Technical Support

The institution should have a well-stocked library. The books, e-books, journals and other resources available in the library should be adequate for the program and the faculty members. The number of classrooms available should be adequate to properly run the program. The classroom facilities and the environment should be conducive to learning.

The number of labs and equipment should be adequate for conducting the program's various laboratory courses. Every student should have the opportunity for hands-on activity in the laboratories. Each lab should have adequate safety and health measures.

Students and faculty members should have access to adequate computing and Internet facilities, including hardware, software tools and support.

4.6 Curriculum and Teaching-Learning Processes

The curriculum should satisfy the relevant program-specific criteria described in Section 6.

The breadth and depth of the curriculum and the teaching-learning activities should be appropriate for

solving complex engineering problems in the relevant discipline. The curriculum should contain an adequate number of courses on mathematics, physical science, humanities and non-engineering subjects. The teaching-learning processes and activities selected for each course should be effective and appropriate for achieving the outcomes. Student participation and learning should be enhanced. Hands-on activities in the lab should be an integral part of teaching and learning. The program should include adequate activities in the lab.

The program should demonstrate the culmination of program outcomes (POs) at the level of solving complex engineering problems, preferably through a final-year design project or capstone project extending over a period of one year.

4.7 Program Educational Objectives

Program Educational Objectives (PEOs) are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. PEOs are assessable based on the attributes and accomplishments of graduates, preferably those who have worked for 3 to 5 years after graduation. Each engineering program should have published PEOs that are clear, concise, assessable and realistic within the context of the available resources. The PEOs should be consistent with the vision and mission of the department offering the program. They should be supported by a curriculum and teaching-learning processes that lead to the attainment of these objectives. Justifications should be provided for how the curriculum and the outcomes contribute to the attainment of the PEOs.

A process should be developed to assess the level of attainment of each PEO to evaluate the academic program's effectiveness. Adequate evidence and documentation on the assessment of PEO attainment should be provided. The assessment tools should be indicated, and the way in which these tools are used should be explained. PEO assessment should lead to the periodic review of PEOs. Feedback from the various program stakeholders, including employers, alumni, students and faculty, should be considered during the review.

4.8 ProgramOutcomes and Assessment

Program Outcomes (POs) or graduate attributes are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These statements relate to the knowledge, skills and attitudes acquired by students while progressing through the program. The program must demonstrate that by the time of graduation, students have achieved an acceptable minimum level of certain knowledge, skills and behavioral traits. The BAETE specifically requires that students acquire the following graduate attributes:

- (a) Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.
- **(b) Problem analysis:** Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4)

- (c) **Design/development of solutions**: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)
- (d) Investigation: Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- (e) Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6)
- (f) The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)
- (g) Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)
- (h) Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
- (i) **Individual work and teamwork:** Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- (j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- (k) Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- (l) **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

In addition to incorporating the above-listed POs (graduate attributes), the educational institution may include additional outcomes in its learning programs. An engineering program that aims to attain the abovementioned POs should ensure that its curriculum encompasses all the attributes of the Knowledge Profile (K1-K8) as presented in Table 4.1 and as included in the PO statements. The ranges of Complex Problem Solving (P1-P7) and Complex Engineering Activities (A1-A5) that should be addressed in the program are given in Tables 4.2 and 4.3, respectively.

Table 4.1: Knowledge Profile

	Attribute			
K1	A systematic, theory-based understanding of the natural sciences applicable			
	to the discipline			
K2	Conceptually based mathematics, numerical analysis, statistics and the			
	formal aspects of computer and information science to support analysis and			
	modeling applicable to the discipline			
К3	A systematic, theory-based formulation of engineering fundamentals			
	required in the engineering discipline			
K4	Engineering specialist knowledge that provides theoretical frameworks and			
	bodies of knowledge for the accepted practice areas in the engineering			
	discipline; much is at the forefront of the discipline			
K5	Knowledge that supports engineering design in a practice area			
K6	Knowledge of engineering practice (technology) in the practice areas in the			
	engineering discipline			
K7	Comprehension of the role of engineering in society and identified issues in			
	engineering practice in the discipline: ethics and the engineer's professional			
	responsibility to public safety; the impacts of engineering activity; economic,			
	social, cultural, environmental and sustainability			
K8	Engagement with selected knowledge in the research literature of the			
	discipline			

Table 4.2: Range of Complex Engineering Problem Solving

Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7:
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	P4: Involve infrequently encountered issues
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder	P6: Involve diverse groups of stakeholders with widely varying involvement and conflicting requirements needs
Interdependence	P7: Are high level problems including many component parts or sub-problems

Table 4.3: Range of Complex Engineering Activities

Attribute	Complex activities means (engineering) activities or projects	
	that have some or all of the following characteristics:	
Range of resources	A1: Involve the use of diverse resources (and for this	
	purpose resources include people, money,	
	equipment, materials, information and technologies)	
Level of interaction	A2: Require resolution of significant problems arising from	
	interactions between wide-ranging or conflicting technical,	
	engineering or other issues	
Innovation	A3: Involve creative use of engineering principles and	
	research-based knowledge in novel ways	
Consequences for	A4: Have significant consequences in a range of contexts,	
society and the	characterized by difficulty of prediction and mitigation	
environment		
Familiarity	A5: Can extend beyond previous experiences by applying	
	Principles-based approaches	

The program should describe the process involved in defining and refining the POs. The correlation between the course outcomes (COs) and POs should be demonstrated through the mapping of COs onto POs.

The way in which each attribute of the Knowledge Profile (K1 - K8) is addressed in the curriculum should be demonstrated through mapping. The program should also demonstrate how each attribute of the Range of Complex Engineering Problems (P1 - P7) and Complex Engineering Activities (A1 - A5) is incorporated in the teaching, learning and assessment.

For each course, a course file must be maintained. The course file should include the assessment of outcomes, curriculum, and examination questions and answer scripts, the results of other assessments, and a summary of performance and attainment of course outcomes with suggestions or feedback for future development.

POs should be assessed using direct methods. Direct methods of assessment are accomplished through the direct examination or observation of students' knowledge or skills against measurable performance indicators or rubrics. In addition, indirect methods may also be used for PO assessment. Indirect methods of assessment are based on opinions or self-report from different stakeholders. The way in which various assessment tools, including examinations and rubrics, contribute to the evaluation of attainment of each PO should be described. The results of the evaluation of PO attainment should be shown.

4.9 Continuous QualityImprovement

The program should have a continuous quality improvement mechanism. It should demonstrate an established system for periodically compiling the level of attainment in terms of PEO, including a mechanism for tracking and obtaining feedback from graduates and their employers. The outcomes of these exercises should be evaluated, and the identified shortcomings and limitations should be used to refine and improve the program.

POs should be assessed on a regular cycle. The program should prepare CQI file for each of the 12 POs to review. Each teaching module should have clear quality requirements and facilitate the achievement of COs through teaching and evaluation methods. Students should provide feedback in

every course on the appropriateness of the COs, course content, delivery of content, assessment and the attainment of the COs. The concerned course instructor should prepare course review reports including CQI files for the courses he/she is teaching. The program should also evaluate the curriculum and teaching quality on a regular basis while considering feedback from faculty members and students. The program should demonstrate that the results of this periodic evaluation are used for continuous improvement.

4.10 Interactions with the Industry

A communication channel between the educational institution and the industry should be in place. The industry should be encouraged to provide feedback concerning the quality of the teaching-learning process. There must be industry participation in the development of the curriculum to ensure that it is relevant, regularly updated, and meets the needs of the industry, particularly in areas experiencing rapid changes. An engineering program should have an Industry Advisory Panel (IAP) and an alumni association (AA) for this purpose. The IAP or AA may meet at certain intervals with the department to provide feedback.

The program should provide students with the opportunity to obtain industrial experience through internships, industry visits or design projects conducted by practicing engineers and faculty members with industrial experience.